Jia, Qianfa’s team published research in Asian Journal of Organic Chemistry in 2021-08-31 | 21667-62-9

Asian Journal of Organic Chemistry published new progress about [4+2] Cycloaddition reaction (regioselective). 21667-62-9 belongs to class nitriles-buliding-blocks, and the molecular formula is C9H6ClNO, Computed Properties of 21667-62-9 .

Jia, Qianfa; Yin, Guoliang; Lan, Yunfei; Lin, Yinhe; Ren, Qiao published the artcile< Base-mediated Benzannulation Reactions for the Synthesis of Densely Functionalized Aryl α-Keto Esters>, Computed Properties of 21667-62-9 , the main research area is phenyl keto ester preparation; cyano phenyl methanone ynedione regioselective cycloaddition.

A novel and straightforward strategy for the construction of versatile densely functionalized aryl α-keto esters were disclosed through a one-pot and efficient [4+2] benzannulation reaction of α-cyano-β-methylenones and ynediones, which were synthesized easily from the corresponding starting materials. This protocol featured high yield, mild metal-free reaction condition, high atom economy, high functional-group tolerance, easy handing and gram-scale synthesis.

Asian Journal of Organic Chemistry published new progress about [4+2] Cycloaddition reaction (regioselective). 21667-62-9 belongs to class nitriles-buliding-blocks, and the molecular formula is C9H6ClNO, Computed Properties of 21667-62-9 .

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Huang, Zihan team published research on Chemistry of Materials in 2022 | 31643-49-9

Related Products of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Related Products of 31643-49-9.

Huang, Zihan;Yin, Claire;Corrado, Tanner;Li, Si;Zhang, Qinnan;Guo, Ruilan research published 《 Microporous Pentiptycene-Based Polymers with Heterocyclic Rings for High-Performance Gas Separation Membranes》, the research content is summarized as follows. Microporous polymers, such as polymers of intrinsic microporosity (PIMs) and thermally rearranged (TR) polymers, have shown promise in advancing the performance of polymer gas separation membranes to overcome the permeability-selectivity trade-off. In this work, a series of thermally rearranged pentiptycene-based polybenzoxazole (PPBO) polymers were prepared from a new pentiptycene-based poly(o-hydroxyl imide) (PPHI) precursor using carefully designed thermal protocols. Fundamental structure-property relationships within the series were established by comprehensively examining the effects of intermediate treatment temperature and the heating rate on the membrane microporosity, properties, and gas separation performance. The incorporation of bulky pentiptycene units into TR PPBO structures, along with optimized TR thermal protocols in this study, provided a route to finely tune and eventually maximize the separation performance of PPBOs, with several films far exceeding the 2015 upper bound for H2/CH4 and O2/N2. In CO2/CH4 mixed-gas permeation tests, PPBO membranes showed excellent resistance to plasticization under CO2 partial pressure as high as 6.6 atm, far surpassing the 2008 mixed-gas upper bound for CO2/CH4. Moreover, a 5 mo aged PPBO film maintained its superior separation performance above the 2008 O2/N2 upper bound and 2015 H2/CH4 upper bound, indicating the excellent aging resistance of PPBOs.

Related Products of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Hu, Jianghuai team published research on Polymer in 2022 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Name: 4-Nitrophthalonitrile

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Name: 4-Nitrophthalonitrile.

Hu, Jianghuai;Xie, Huanxin;Zhu, Zhengzhu;Yang, Wenjie;Tan, Wei;Zeng, Ke;Yang, Gang research published 《 Reducing the melting point and curing temperature of aromatic cyano-based resins simultaneously through a Bronsted acid-base synergistic strategy》, the research content is summarized as follows. High m.ps. (Mp) and high curing temperatures are two key processing problems that limit the application of aromatic cyano-based (AC) resins. A Bronsted acid-base synergistic strategy based on an acid-base eutectic and mechanisms for nucleophilic addition and ionization equilibrium are proposed to reduce the Mp and curing temperature of AC resins. Blends of 4,5-dicyanoimidazole (DCI, Bronsted acid) and amine-containing phthalonitriles (4 or 2 or 3)-aminophenoxy phthalonitrile, APNs, Bronsted bases were selected as model acid-base systems to study the synergistic behaviors in processing. The results show that the Mp and the peak exothermic temperature (Trp) of APN-DCI blends can be reduced by more than 31°C and 85°C compared with their intrinsic components, resp. DSC and XRD show that the decrease in the Mp of the blends is induced by the formation of eutectics. A pos. relationship between pKa and the curing reactivity is confirmed by theory and exptl. methods. The cured products show outstanding thermal and mech. properties compared with reported AC resins. This research provides a new convenient route for regulating the curing behavior of AC resins and will significantly promote the development of high-performance AC resins.

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Name: 4-Nitrophthalonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Hu, Meng-Ke team published research on Applied Catalysis, B: Environmental in 2022 | 31643-49-9

Electric Literature of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Electric Literature of 31643-49-9.

Hu, Meng-Ke;Zhou, Shenghua;Ma, Dong-Dong;Zhu, Qi-Long research published 《 New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction》, the research content is summarized as follows. The heterogenized metallomacrocycles with atomically dispersed active sites are identified as the promising candidates for electrocatalytic CO2 reduction reaction (CO2RR), where their unique heterointerface with interaction between sp2 carbon and macrocyclic mols. is important but remains vague. Herein, based on well-structured nickel phthalocyanine and porphyrin with the same functional groups (MeNiPc and MeNiPp), the influences of heterointerfacial effect on catalytic performances are systematically disclosed. Through the mol. structure-induced self-adaptive adsorption with optimized heterointerfacial distance, MeNiPc/graphene reveals a high CO Faradaic efficiency of ∼99% in a wide potential window, greatly outperforming the MeNiPp/graphene counterpart (≤29.6%). Detailed measurements and theor. calculations decipher that the higher CO2RR activity of MeNiPc/graphene is attributed to the unique electronic structures of the Ni-N4 configurations suitable for well-suited heterointerfacial charge transfer and rapid CO desorption. Addnl., the extended research confirms the universality of heterointerface engineering on boosting the catalytic performances.

Electric Literature of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Hu, Meng-Ke team published research on Nano Research in | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Electric Literature of 31643-49-9

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Electric Literature of 31643-49-9.

Hu, Meng-Ke;Wang, Ning;Ma, Dong-Dong;Zhu, Qi-Long research published 《 Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level》, the research content is summarized as follows. Heterogenized phthalocyanine-based mol. catalysts are the ideal electrocatalytic platforms for CO2 reduction reaction (CO2RR) because of their well-defined structures and potential properties. In addition to the pursuit of catalytic performances at industrial potentials, it is equally important to explore exptl. rules and design considerations behind activity and selectivity. Herein, we successfully developed a series of nickel phthalocyanines (NiPcs) with different alkyl chains immobilized on multi-walled carbon nanotubes (CNT) to unveil the structure-performance relationship for electrocatalytic CO2RR in neutral electrolyte. Interestingly, a volcano-type trend was found between the activity for CO2-to-CO conversion and alkyl chain lengths of NiPcs on CNT. Exptl. results further indicate that their electrocatalytic CO2RR activities are highly related to the mol. dispersion and the heterointerfacial charge transfer capability adjusted by the alkyl chains. Particularly, the optimized electrocatalyst via accurate clipping at the mol. level exhibits an ultrahigh activity with Faradaic efficiency of CO up to 99.52%.

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Electric Literature of 31643-49-9

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Gungordu Solgun, Derya team published research on Journal of Coordination Chemistry in | 31643-49-9

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Application In Synthesis of 31643-49-9.

Gungordu Solgun, Derya;Yildiko, Umit;Agirtas, Mehmet Salih research published 《 Synthesis, photophysical, photochemical, and DFT properties of a zinc phthalocyanine with 2-(2-isopropyl-5-methylphenoxy)phenoxy peripheral groups》, the research content is summarized as follows. The 2-nitrophenol and 4-nitrophthalonitrile reagents were mixed in the presence of potassium carbonate in DMF under N2 at room temperature Then, by adding thymol(5-methyl-2-isopropylphenol) and continuing the reaction, 4-(2-(2-isopropyl-5-methylphenoxy)phenoxy)phthalonitrile was obtained. Zinc phthalocyanine (4) was formed from the reaction of ZnCl2 and 4-(2-(2-isopropyl-5-methylphenoxy)phenoxy)phthalonitrile (3) at 190°. Both compounds were soluble in most organic solvents. Compounds and were characterized by mass, IR, electronic absorption and NMR spectroscopies. The concentration-absorption relation of 4 was examined by UV spectroscopy. The photophys. and photochem. properties of 4 were investigated. The geometry-optimized structures of 4 were investigated with the DFT approach, B3PW91/6-31G (d,p), and B3LYP/LanL2DZ basis set. Energy properties, first order hyperpolarizability, and Fukui function calculations were also performed. Natural bond orbital anal. was performed to explain the charge transfer (or) charge delocalization due to intramol. interactions in phthalocyanine.

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Gunsel, Armagan team published research on Journal of Molecular Structure in 2021 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Application In Synthesis of 31643-49-9

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Application In Synthesis of 31643-49-9.

Gunsel, Armagan;Taslimi, Parham;Atmaca, Goknur Yasa;Bilgicli, Ahmet T.;Piskin, Hasan;Ceylan, Yusuf;Erdogmus, Ali;Yarasir, M. Nilufer;Gulcin, Ilhami research published 《 Novel potential metabolic enzymes inhibitor, photosensitizer and antibacterial agents based on water-soluble phthalocyanine bearing imidazole derivative》, the research content is summarized as follows. The authors have reported on the synthesis and characterization of water-soluble hydrochloride forms (2a4a) based on novel peripherally [M = metal-free (2), Zn (II) (3), Ga (III) chloride (4)] phthalocyanines bearing 1-methyl-1H-imidazole-2-thiol substituents. Characterization of all compounds used was supported by spectroscopic techniques such as UV-visible, FTIR 1H NMR, 13C NMR and MALDI-MS, etc. The confirmation of the mol. structure of 4-(1-methyl-1H-imidazole-2-thiol) phthalonitrile (1) by single crystal x-ray diffraction experiment was performed for the 1st time. Besides, the intra/inter-mol. interactions inside the obtained crystal structure were studied. Afterward, the effects of the central metal atoms and solvents on the photophysicochem. properties of the phthalocyanines were analyzed to study their potential to use as a photosensitizer in photodynamic therapy (PDT). The phthalocyanines have therapeutic outcomes for cancer treatment. All compounds have a better ability to inhibit compared to existing tried inhibitors. Among these, the best inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes are (4) (Ki 47.71 ± 9.14μM and IC50 68.22) and (3a) (Ki 20.12 ± 3.75μM and IC50 19.24), resp. Also, against α-Glycosidase, (4) showed the highest effect (Ki 9.13 ± 1.05μM and IC50 11.22). Phthalocyanines were performed to gram-neg. and gram-pos. bacteria using min. inhibition concentration (MIC) assay and indicated an antibacterial effect.

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Application In Synthesis of 31643-49-9

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Guzel, Emre team published research on ACS Applied Bio Materials in 2022 | 31643-49-9

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Application In Synthesis of 31643-49-9.

Guzel, Emre;Atmaca, Goknur Yasa;Kuznetsov, Aleksey E.;Turkkol, Aysegul;Bilgin, Mehmet Dincer;Erdogmus, Ali research published 《 Ultrasound versus Light: Exploring Photophysicochemical and Sonochemical Properties of Phthalocyanine-Based Therapeutics, Theoretical Study, and In Vitro Evaluations》, the research content is summarized as follows. Photodynamic therapy (PDT) applications carried out with the assistance of ultrasound have attracted significant attention in recent years. The use of phthalocyanines, which are an important component as photosensitizers in PDT, is becoming more important day by day. In therapeutic applications, phthalocyanines can promote the production of reactive oxygen species. Motivated by this fact, the syntheses of metal-free (2), gallium (3), and indium (4) phthalocyanines have been achieved by substituting 4-(cinnamyloxy)phthalonitrile for the first time to evaluate their therapeutic applications. Addnl., photophysicochem., sonophotochem., and in vitro evaluations of phthalocyanines have been reported. To the best of our knowledge, this is the first study of the use of phthalocyanines with different metal ions as potential photosensitizers for sonophotodynamic therapy (SPDT) applications in gastric cancer cell lines. The results show that the quantum yield of the generation of singlet oxygen increased in sonophotochem. studies (ΦΔ = 0.55 (2), 0.85 (3), 0.96 (4)), compared to photochem. studies (ΦΔ = 0.22 (2), 0.61 (3), 0.78 (4)). The d. functional theory (DFT) results are in good agreement with the exptl. results and suggest increased reactivity of phthalocyanines 3 and 4 in various redox processes, thus implying their applicability and usefulness as potential therapeutic agents. These phthalocyanines are effective sensitizers for PDT, sonodynamic therapy (SDT), and SPDT against MKN-28 gastric cancer cell line in vitro. All three treatments decreased cell viability and induced apoptosis in the gastric cancer cell line. However, indium phthalocyanine (4)-mediated SPDT was a more effective treatment modality compared to indium phthalocyanine (4)-mediated PDT and SDT. Also, indium phthalocyanine (4) was found to be a more effective sensitizer to activate apoptosis compared to the other phthalocyanines. To sum up, phthalocyanine-mediated SPDT enhances the cytotoxic effect on gastric cancer cells more than the effect of SDT or PDT alone.

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Hadimane, Sowmyashree team published research on ACS Applied Energy Materials in 2021 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Recommanded Product: 4-Nitrophthalonitrile.

Hadimane, Sowmyashree;Aralekallu, Shambhulinga;CP, Keshavananda Prabhu;Hojamberdiev, Mirabbos;Sannegowda, Lokesh Koodlur research published 《 Bioinspired Precious-Metal-Free N4 Macrocycle as an Electrocatalyst for the Hydrogen Evolution Reaction》, the research content is summarized as follows. The design and development of strategies and catalysts are essential for sustainable energy production, particularly for the hydrogen evolution reaction (HER). Precious Pt/C catalyst is known to demonstrate high efficiency in the electrochem. HER and suffers from commercialization issues. Therefore, precious-metal-free and organic-based catalysts are of importance for a future perspective. In this work, cobalt tetra[4-[2-(1H-benzimidazol-2-yl)phenoxy]]phthalocyanine (CoTBImPc) is synthesized for the first time and characterized by physicochem. and electrochem. techniques. 1H NMR and mass spectral data reveal the successful formation of the ligand and complex, whereas the thermogravimetry (TG) study confirms the thermal stability of the complex up to 400 °C. The electroactivity of CoTBImPc is compared with the hybrid composite of a carbon nanotube (CNT-CoTBImPc) and benchmark Pt/C catalyst for the HER. Linear sweep voltammetry (LSV) shows that an onset potential for the HER for CoTBImPc-CNT/GCE is shifted to a higher potential than that of CoTBImPc/GCE, suggesting that the HER is more feasible at the surface of CoTBImPc-CNT. Higher activity for CoTBImPc-CNT/GCE in comparison with that of CoTBImPc/GCE in 0.5 M H2SO4 (pH = 0.3) may be ascribed to the enhanced conductivity, a greater number of active sites, and a larger surface area. The hybrid composite yields a c.d. of -10 mA·cm-2 and demonstrates HER activity at a lower overpotential (63 mV). The benchmark Pt/C catalyst and the as-synthesized pristine phthalocyanine mol. exhibit the HER at overpotentials of 3 and 160 mV, resp., at a c.d. of -10 mA·cm-2. A lower Tafel slope value of 43.2 mV·dec-1 and a higher double-layer capacitance value of 44 mF·cm-2 confirm that the hybrid composite is one of the superior catalyst candidates for the HER compared to the bare glassy carbon electrode (GCE) and pristine metal phthalocyanine. Further, CoTBImPc-CNT/GCE also exhibits an excellent stability during the HER.

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Harmandar, Kevser team published research on Monatshefte fuer Chemie in 2021 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Nitrile is any organic compound with a −C≡N functional group. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Recommanded Product: 4-Nitrophthalonitrile.

Harmandar, Kevser;Kaya, Esra N.;Saglam, Mehmet F.;Sengul, Ibrahim F.;Atilla, Devrim research published 《 Synthesis and photo-physicochemical properties of phthalocyanines substituted with sterically hindered phenol》, the research content is summarized as follows. Synthesis of the Zn, Mg, and LuOAc phthalocyanines (Pcs) containing sterically hindered 2,6-di-(tert-butyl)-4-methylphenol group were successfully achieved by the cyclotetramerization of the 4-[2,6-di-(tert-butyl)-4-methylphenoxy]phthalonitrile. All compounds were fully characterized by 1H and 13C NMR, IR, elemental anal., UV-visible, and MALDI-TOF spectral data. The photo-physicochem. properties of the targeted mols. include fluorescence quantum yields, lifetimes, singlet oxygen generation, and photodegradation quantum yields were recorded in DMSO. Graphical abstract: [graphic not available: see fulltext].

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., Recommanded Product: 4-Nitrophthalonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts