Khanfar, Mohammad A. et al. published their research in European Journal of Medicinal Chemistry in 2014 | CAS: 1753-48-6

2-Aminopyrimidine-5-carbonitrile (cas: 1753-48-6) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).HPLC of Formula: 1753-48-6

Development and characterization of 3-(arylsulfamoyl)benzamides as potent and selective SIRT2 inhibitors was written by Khanfar, Mohammad A.;Quinti, Luisa;Wang, Hua;Choi, Soo Hyuk;Kazantsev, Aleksey G.;Silverman, Richard B.. And the article was included in European Journal of Medicinal Chemistry in 2014.HPLC of Formula: 1753-48-6 This article mentions the following:

Inhibitors of sirtuin-2 deacetylase (SIRT2) have been shown to be protective in various models of Huntington’s disease (HD) by decreasing polyglutamine aggregation, a hallmark of HD pathol. The present study was directed at optimizing the potency of SIRT2 inhibitors containing the neuroprotective sulfobenzoic acid scaffold and improving their pharmacol. To achieve that goal, 176 analogs were designed, synthesized, and tested in deacetylation assays against the activities of major human sirtuins SIRT1-3. This screen yielded 15 compounds with enhanced potency for SIRT2 inhibition and 11 compounds having SIRT2 inhibition equal to reference compound AK-1. The newly synthesized compounds also demonstrated higher SIRT2 selectivity over SIRT1 and SIRT3. These candidates were subjected to a dose-response bioactivity assay, measuring an increase in α-tubulin K40 acetylation in two neuronal cell lines, which yielded five compounds bioactive in both cell lines and eight compounds bioactive in at least one of the cell lines tested. These bioactive compounds were subsequently tested in a tertiary polyglutamine aggregation assay, which identified five inhibitors. ADME properties of the bioactive SIRT2 inhibitors (e.g., I) were assessed, which revealed a significant improvement of the pharmacol. properties of the new entities, reaching closer to the goal of a clin.-viable candidate. In the experiment, the researchers used many compounds, for example, 2-Aminopyrimidine-5-carbonitrile (cas: 1753-48-6HPLC of Formula: 1753-48-6).

2-Aminopyrimidine-5-carbonitrile (cas: 1753-48-6) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).HPLC of Formula: 1753-48-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Legnani, Luca et al. published their research in ACS Catalysis in 2016 | CAS: 60979-25-1

3-Amino-4-methoxybenzonitrile (cas: 60979-25-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Electric Literature of C8H8N2O

Direct and Practical Synthesis of Primary Anilines through Iron-Catalyzed C-H Bond Amination was written by Legnani, Luca;Prina Cerai, Gabriele;Morandi, Bill. And the article was included in ACS Catalysis in 2016.Electric Literature of C8H8N2O This article mentions the following:

The direct C-H amination of arenes is an important strategy to streamline the discovery and preparation of functional mols. Herein, we report an operationally simple arene C-H amination reaction that, in contrast to most literature precedence, affords directly the synthetically versatile primary aniline products without relying on protecting group manipulations. Inexpensive Fe(II) sulfate serves as a convenient catalyst for the transformation. The reaction tolerates a wide scope of arenes, including structurally complex drugs. Importantly, the arene substrates are used as limiting reagents in the transformation. This operationally simple transformation should considerably accelerate the discovery of medicines and functional mols. In the experiment, the researchers used many compounds, for example, 3-Amino-4-methoxybenzonitrile (cas: 60979-25-1Electric Literature of C8H8N2O).

3-Amino-4-methoxybenzonitrile (cas: 60979-25-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Electric Literature of C8H8N2O

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Han, Jing et al. published their research in Advanced Synthesis & Catalysis in 2013 | CAS: 1483-54-1

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Product Details of 1483-54-1

Copper(I)-Catalyzed Coupling Cyclization of Methyl Perfluoroalk-2-ynoates with 2-Aminobenzonitriles: Synthesis of 2-Perfluoroalkylated Quinolines was written by Han, Jing;Cao, Long;Bian, Linglin;Chen, Jie;Deng, Hongmei;Shao, Min;Jin, Zhijun;Zhang, Hui;Cao, Weiguo. And the article was included in Advanced Synthesis & Catalysis in 2013.Product Details of 1483-54-1 This article mentions the following:

An efficient route to 2-perfluoroalkylated quinoline derivatives through the copper(I)-mediated coupling-cyclization of 2-aminobenzonitriles with Me perfluoroalk-2-ynoates is described. Moderate to excellent yields have been achieved under mild conditions. E.g., in presence of CuBr and piperidine in DMSO, coupling-cyclization of 2-H2NC6H4CN and CF3CCCO2Me gave 94% 2-perfluoroalkylated quinoline derivative (I). The reaction mechanism is also discussed. In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Product Details of 1483-54-1).

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).Product Details of 1483-54-1

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zheng, Haoteng et al. published their research in RSC Advances in 2022 | CAS: 55406-13-8

3-Methylthiophene-2-carbonitrile (cas: 55406-13-8) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Synthetic Route of C6H5NS

Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades was written by Zheng, Haoteng;Xiao, Qinjie;Mao, Feiying;Wang, Anming;Li, Mu;Wang, Qiuyan;Zhang, Pengfei;Pei, Xiaolin. And the article was included in RSC Advances in 2022.Synthetic Route of C6H5NS This article mentions the following:

In this work, a greener chemo-enzymic cascade to synthesize alky and aryl nitriles RCN (R = Ph, Bn, pentyl, furan-2-yl, etc.) from readily accessible aldehydes RCHO, that were further transformed into corresponding amides RC(O)NH2 via an artificial enzyme cascade was reported. A biphasic reaction system was designed to bridge chem. synthesis and enzymic catalysis through simple phase separation The biphasic system mainly perfectly avoided the inactivation of hydroxylamine on aldoxime dehydratase from Pseudomonas putida (OxdF1) and nitrile hydratase from Aurantimonas manganoxydans ATCC BAA-1229 (NHase1229). For the synthesis of various nitriles, moderate isolation yields of approx. 60% were obtained by the chemo-enzymic cascade. Interestingly, two seemingly conflicting reactions of dehydration and hydration were sequentially proceeded to synthesize amides by the synergistic catalysis of OxdF1 and NHase1229 in E. coli cells. An isolation yield of approx. 62% was achieved for benzamide at the one-liter scale. In addition, the shuttle transport of substrates and products between two phases is convenient for the product separation and n-hexane recycling. Thus, the chemo-enzymic cascade shows a potential application in the cyanide-free and large-scale synthesis of nitriles and amides. In the experiment, the researchers used many compounds, for example, 3-Methylthiophene-2-carbonitrile (cas: 55406-13-8Synthetic Route of C6H5NS).

3-Methylthiophene-2-carbonitrile (cas: 55406-13-8) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. Both routes are green in the sense that they do not generate stoichiometric amounts of salts.Synthetic Route of C6H5NS

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Perry, Matthew W. D. et al. published their research in Journal of Medicinal Chemistry in 2017 | CAS: 60025-09-4

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C5H3ClN4

Design and Synthesis of Soluble and Cell-Permeable PI3Kδ Inhibitors for Long-Acting Inhaled Administration was written by Perry, Matthew W. D.;Bjoerhall, Karin;Bonn, Britta;Carlsson, Johan;Chen, Yunhua;Eriksson, Anders;Fredlund, Linda;Hao, Hai’e;Holden, Neil S.;Karabelas, Kostas;Lindmark, Helena;Liu, Feifei;Pemberton, Nils;Petersen, Jens;Rodrigo Blomqvist, Sandra;Smith, Reed W.;Svensson, Tor;Terstiege, Ina;Tyrchan, Christian;Yang, Wenzhen;Zhao, Shuchun;Oester, Linda. And the article was included in Journal of Medicinal Chemistry in 2017.Electric Literature of C5H3ClN4 This article mentions the following:

PI3Kδ is a lipid kinase that is believed to be important in the migration and activation of cells of the immune system. Inhibition is hypothesized to provide a powerful yet selective immunomodulatory effect that may be beneficial for the treatment of conditions such as asthma or rheumatoid arthritis. In this work, identification of inhibitors based on a thiazolopyridone core structure and their subsequent optimization for inhalation is described. The initially identified compound I had good potency and isoform selectivity but was not suitable for inhalation. Addition of basic substituents to a region of the mol. pointing to solvent was tolerated (enzyme inhibition pIC50 > 9), and by careful manipulation of the pKa and lipophilicity, the authors were able to discover compounds II (R = Me or i-Bu) with good lung retention and cell potency that could be taken forward to in vivo studies where significant target engagement could be demonstrated. In the experiment, the researchers used many compounds, for example, 4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4Electric Literature of C5H3ClN4).

4-Amino-6-chloropyrimidine-5-carbonitrile (cas: 60025-09-4) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.Electric Literature of C5H3ClN4

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Shaabani, Ahmad et al. published their research in Monatshefte fuer Chemie in 2017 | CAS: 70291-62-2

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.SDS of cas: 70291-62-2

A green chemical approach: a straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents was written by Shaabani, Ahmad;Hooshmand, Seyyed Emad;Afaridoun, Hadi. And the article was included in Monatshefte fuer Chemie in 2017.SDS of cas: 70291-62-2 This article mentions the following:

The synergic effect of choline chloride/urea as a deep eutectic solvent was investigated in the synthesis of 2-aminothiophene derivatives via a three-component cyclocondensation of a ketone or an aldehyde with activated nitriles and elemental sulfur catalyzed by NaOH as cheap and highly accessible base. The advantages of this catalytic protocol were eco-friendly, easy to set up, reusability and a simple separation and purification of products without using chromatog. in high yields at short times. In the experiment, the researchers used many compounds, for example, 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2SDS of cas: 70291-62-2).

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. In conventional organic reductions, nitrile is reduced by treatment with lithium aluminium hydride to the amine. Reduction to the imine followed by hydrolysis to the aldehyde takes place in the Stephen aldehyde synthesis, which uses stannous chloride in acid.SDS of cas: 70291-62-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Zhang, Chenhuan et al. published their research in Organic Letters in 2020 | CAS: 1483-54-1

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile

Pd/Cu-Catalyzed Domino Cyclization/Deborylation of Alkene-Tethered Carbamoyl Chloride and 1,1-Diborylmethane was written by Zhang, Chenhuan;Wu, Xianqing;Wang, Chenchen;Zhang, Chengxi;Qu, Jingping;Chen, Yifeng. And the article was included in Organic Letters in 2020.Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile This article mentions the following:

Reported herein is a Pd/Cu cooperative-catalyzed dicarbofunctionalization of alkene-tethered carbamoyl chlorides with 1,1-diborylmethane. This cyclization/deborylation cascade strategy allows for the expedient formation of the versatile borylated 3,3-disubstituted oxindole skeleton, allowing for further functionalization via the derivatization of the C-B bond. In the experiment, the researchers used many compounds, for example, 2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile).

2-Amino-4-(trifluoromethyl)benzonitrile (cas: 1483-54-1) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 2-Amino-4-(trifluoromethyl)benzonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Itou, Tatsuya et al. published their research in Tetrahedron in 2009 | CAS: 154532-34-0

3-(tert-Butyl)benzonitrile (cas: 154532-34-0) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Category: nitriles-buliding-blocks

Decarboxylative photosubstitution of dicyanobenzenes with aliphatic carboxylate ions was written by Itou, Tatsuya;Yoshimi, Yasuharu;Morita, Toshio;Tokunaga, Yuji;Hatanaka, Minoru. And the article was included in Tetrahedron in 2009.Category: nitriles-buliding-blocks This article mentions the following:

The photoreaction of dicyanobenzenes with aliphatic carboxylate ions afforded alkylcyanobenzenes and alkyldicyanobenzenes via decarboxylative substitution. The redox-photosensitized reaction system was effective in improving the product yield. The efficiency of this photoreaction depended on the structure of the carboxylate ion, and the product distribution varied with the dicyanobenzenes employed. This photoreaction was proved to be a clean process for the preparation of alkylcyanobenzenes. In the experiment, the researchers used many compounds, for example, 3-(tert-Butyl)benzonitrile (cas: 154532-34-0Category: nitriles-buliding-blocks).

3-(tert-Butyl)benzonitrile (cas: 154532-34-0) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Nitriles are susceptible to hydrogenation over diverse metal catalysts. The reaction can afford either the primary amine (RCH2NH2) or the tertiary amine ((RCH2)3N), depending on conditions.Category: nitriles-buliding-blocks

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Fisher, T. H. et al. published their research in Journal of Organic Chemistry in 1978 | CAS: 64113-86-6

5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).SDS of cas: 64113-86-6

Substituent effects in free-radical reactions. A study of 4-substituted 3-cyanobenzyl free radicals was written by Fisher, T. H.;Meierhoefer, A. W.. And the article was included in Journal of Organic Chemistry in 1978.SDS of cas: 64113-86-6 This article mentions the following:

An extended Hammett treatment of the kinetics of N-bromosuccinimide bromination of I (R = H, halo, Me, Ph, MeO, NO2, PhN:N, CN, MeCO) led to a free radical substituent constant (σ•). The substituent order of free-radical stabilization was F < MeO < Me < H < Cl < Ph < I < Br < NO2 < PhN:N < CN < MeCO. F and MeO destabilized the radical. In the experiment, the researchers used many compounds, for example, 5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6SDS of cas: 64113-86-6).

5-Methyl-2-nitrobenzonitrile (cas: 64113-86-6) belongs to nitriles. The electronic structure of nitriles is very similar to that of an alkyne with the main difference being the presence of a set of lone pair electrons on the nitrogen. In addition, Nitriles can react with alkynes, which leads to an increase in carbon chain length (carbocyanation).SDS of cas: 64113-86-6

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Holland, Herbert L. et al. published their research in Canadian Journal of Chemistry in 1987 | CAS: 101219-69-6

(R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.Synthetic Route of C9H9NO

Side chain hydroxylation of aromatic compounds by fungi. 1. Products and stereochemistry was written by Holland, Herbert L.;Bergen, Eleanor J.;Chenchaiah, P. Chinna;Khan, Shaheer H.;Munoz, Benito;Ninniss, Ronald W.;Richards, Denise. And the article was included in Canadian Journal of Chemistry in 1987.Synthetic Route of C9H9NO This article mentions the following:

The fungus Mortierella isabellina can convert ethylbenzene and a number of para-substituted derivatives to the corresponding optically active 1-phenylethanols with enantiomeric excesses between 5% and 40% and chem. yields up to 45%. 2-Ethylnaphthalene, 2-ethylthiophene, and n-propylbenzene were similarly converted, as were the bicyclic compounds indane and tetralin. In most cases, the R absolute configuration of product predominated. The fungi Cunninghamella echinulata elegans and Helminthosporium species are also capable of performing some of these transformations. M. isabellina And C. elegans also produce 2-phenylethanols as products in some cases. The highest enantiomeric excesses during benzylic hydroxylation were obtained with Helminthosporium and are attributable, at least in part, to further stereoselective oxidation of the alchol. Cross-induction experiments with M. isabellina indicate that the same enzyme may be responsible for the benzylic hydroxylation of ethylbenzene, 2-ethylthiophene, and 2-ethylnaphthalene. In the experiment, the researchers used many compounds, for example, (R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6Synthetic Route of C9H9NO).

(R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6) belongs to nitriles. Nitrile carbon shifts are in the range of 115–125 ppm whereas in isonitriles the shifts are around 155–165 ppm. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.Synthetic Route of C9H9NO

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts