The important role of 72635-78-0

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 3-Amino-4-bromobenzonitrile, its application will become more common.

Electric Literature of 72635-78-0,Some common heterocyclic compound, 72635-78-0, name is 3-Amino-4-bromobenzonitrile, molecular formula is C7H5BrN2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

4-Bromo-3-chlorobenzonitrile (60c). Aniline 56 (5.19 g, 26.4 mmol) was added to conc. HCl maintained below 0 C. A solution of sodium nitrite (3.67 g, 53.2 mmol) in water (10 mL) was added dropwise such that the temperature of the reaction mixture did not exceed 5 C. The mixture was maintained for 1 h, then was added to a solution of CuCl (6.55 g, 66.2 mmol) in conc. HCl (20 mL). Toluene (200 mL) was added, and the biphasic mixture was stirred at 60-80 C for 1 h. Layers were separated, and the aqueous layer was extracted into toluene to afford a white solid (4.67 g, 82%); mp 80-81 C (hexane); 1H NMR delta 9.55 (d, J = 1.8 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.4 and 1.9 Hz, 1 H); HPLC (Method B) tR 3.96 min (100 area % at 265 nm). Anal. (C7H3BrClN) C, H, N, Br, Cl.; Reagents and conditions: (a) fuming HNO3, H2SO4; (b) Fe, AcOH, EtOH; (c) NaNO2, aq. HCl, then CuCl; (d) NalO4, l2, AcOH, AC2O, H2SO4; (e) NH2OH HCl, Py, EtOH (f) Ac2O; (g) TMSA, Pd2Cl2(PPh3)2, Cul, Et3N; (h) TMSA, PPh3, Pd(PPh3)4, Cul, piperidine; (j) 2-methyl-3-butyn-2-ol, Pd2Cl2(PPh3)2, Cul, Et3N; (k) 2-methyl-3-butyn-2-ol, 10% Pd/C, PPh3, Cul, aq. K2CO3/DME; (I) Cs2CO3, aq. CH3CN or MeOH; (m) NaH, toluene.; A second general method is depicted in Scheme 2 immediately hereinabove and comprises the cycloaddition of cyanophenylacetylenes 51 and benzaldehyde chlorooximes 52 in the presence of bis(tributyltin) oxide, see Moriya, O., et al., J. Chem. Soc., Perkin Trans., 1, 413-417 (1994); Moriya, O., et al., J. Chem. Soc., Chem. Commun., 17-18 (1991), or triethylamine, see Thomsen, l., et al., Acta Chem. Scand. (B), 319-313 (1988), in nonpolar solvents to give isoxazole dinitriles 53a-h,k-s and bromonitrile 53i. The latter was treated with copper(I) cyanide to give dinitrile 53j. See Friedman. L., et al., J. Org. Chem., 26, 2522-2524 (1961). This method also afforded alternate routes to dinitriles 50a,b,g, k prepared by the first method as provided in Scheme 1. The phenylacetylene synthons 51a-g were prepared as shown in Scheme 3 below. Starting materials 60a,e,g were commercially available. Nitration of 60a gave 60b. See Borsche, W., L., et al., Chem. Ber., 49, 2222-2243 (1916). The latter was reduced to aniline 56, see Blanksma, J. J., et al., Recl. Trav. Chim. Pays-Bas, 66, 365-373 (1947), which underwent diazotization followed by treatment with copper(l) chloride to give chlorobenzene 60c. Triflate 60d was prepared by treatment of 4-bromo-3-hydroxybenzonitrile with triflic anhydride. The preparation of aryl iodide 60f began with the known transformation of aldehyde 57 to iodo derivative 58. See Lulinski, P., et al., Bull. Chem. Soc. Jpn., 73(4), 951-956 (2000). Treatment of 58 with hydroxylamine hydrochloride gave aldoxime 59, which was dehydrated to give nitrile 60f using acetic anhydride. The aryl halides or triflates 60a-g were treated with (trimethylsilyl)acetylene, see Roesch. K. R., et al., J. Org. Chem., 66, 412-420 (2001), or with 2-methyl-3-butyn-2-ol, see Bleicher, L. S., et al., J. Org. Chem., 63, 1109-1118 (1998), to give intermediates 61a-f or 62a-f, respectively, of which 61a,d and 62a have been reported previously. See Dirk. S. M., et al., Tetrahedron, 59(3), 287-293 (2003); Bleicher, L. S., et al., J. Org. Chem., 63, 1109-1118 (1998). The acetylenes 51 (of which 51a,e were known previously), see Blackburn, B. K., et al., J. Med. Chem., 40(5), 717-729 (1997); Dulog, L., et al., Liebigs Ann. Chem., 9, 1663-1671 (1995), were obtained by the treatment of intermediates 61 or 62 with cesium carbonate in acetonitrile or sodium hydride in toluene, respectively. See Bleicher, L. S., et al., J. Org. Chem., 63, 1109-1118 (1998). The use of cesium carbonate in acetonitrile was introduced for the deprotection of intermediates 61 after the treatment of compound 61b with potassium carbonate in methanol, see Blackburn, B. K., et al., J. Med. Chem., 40(5), 717-729 (1997), failed to give product 51b. The pathway using 2-methyl-3-butyn-2-ol provided more economical preparations of all phenylacetylenes 51 except nitro analog 51b.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 3-Amino-4-bromobenzonitrile, its application will become more common.

Reference:
Patent; THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL; EP1719767; (2006); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Brief introduction of C7H5BrN2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 3-Amino-4-bromobenzonitrile, its application will become more common.

Reference of 72635-78-0,Some common heterocyclic compound, 72635-78-0, name is 3-Amino-4-bromobenzonitrile, molecular formula is C7H5BrN2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

The following intermediates as shown in Table 48 are synthesized in a similar fashion from the appropriate intermediatesStep 1: Synthesis of Intermediate 1-12.1 To R27 (25.0 g, 111 mmol) in acetonitrile (750 mL) is added Mel (15 niL, 241 mmol) and K2C03 (60.0 g, 434 mmol) and the reaction mixture is stirred at 60 C for 2 h. The reaction mixture is filtered and concentrated. Water and ethyl acetate are added to the residue. The organic layer is extracted twice with water, dried over MgS04 and concentrated. Yield 56%, m/z 240/242 [M+H]+, rt 0.48 min, LC-MS Method X001 004.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 3-Amino-4-bromobenzonitrile, its application will become more common.

Reference:
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; ANDERSKEWITZ, Ralf; GRAUERT, Matthias; GRUNDL, Marc; HAEBEL, Peter, Wilhelm; OOST, Thorsten; PAUTSCH, Alexander; PETERS, Stefan; BINDER, Florian; VINTONYAK, Viktor; WO2014/140075; (2014); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Extended knowledge of 3-Amino-4-bromobenzonitrile

The synthetic route of 72635-78-0 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 72635-78-0, name is 3-Amino-4-bromobenzonitrile belongs to nitriles-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below. SDS of cas: 72635-78-0

To R27 (25.0 g, 111 mmol) in acetonitrile (750 mL) is added MeI (15 mL, 241 mmol) and K2CO3 (60.0 g, 434 mmol) and the reaction mixture is stirred at 60 C. for 2 h. The reaction mixture is filtered and concentrated. Water and ethyl acetate are added to the residue. The organic layer is extracted twice with water, dried over MgSO4 and concentrated. Yield 56%. For I-12.1.1, I-12.1.2, I-12.1.3, I-12.1.5, I-12.1.7 and I-12.1.8 sodium hydride and DMF is used instead of potassium carbonate and ACN. For I-12.1.3, I-12.1.7 and I-12.1.8 the reaction temperature is r.t.

The synthetic route of 72635-78-0 has been constantly updated, and we look forward to future research findings.

New downstream synthetic route of 3-Amino-4-bromobenzonitrile

The synthetic route of 72635-78-0 has been constantly updated, and we look forward to future research findings.

Application of 72635-78-0, A common heterocyclic compound, 72635-78-0, name is 3-Amino-4-bromobenzonitrile, molecular formula is C7H5BrN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

To a mixture of 3-amino-4-bromo-benzonitrile (1.98 g, 10 mmol), TEA (5.06 g, 50 mmol), and methylene chloride (50 ml), mesyl chloride (2.71 ml, 35 mmol) was added at 0 C. and the mixture was stirred at room temperature for 30 min. Water was added to the reaction solution, which was then extracted with dichloromethane. The organic layer was dried over sodium sulfate. The drying agent was removed by filtration and the residues obtained after concentration under reduced pressure were added with tetrahydrofuran (100 ml), water (400 mul) and sodium hydride (540 mg, 15.5 mmol), and stirred at room temperature for 16 hr. To the reaction solution, saturated aqueous solution of ammonium chloride (200 ml) was added followed by extraction with ethyl acetate. The organic layer was dried over sodium sulfate. The drying agent was removed by filtration and the residues obtained after concentration under reduced pressure were purified by silica gel column chromatography (hexane/ethyl acetate) to obtain the title compound (2.48 g, 90%).1H-NMR (400 MHz, DMSO-d6) delta: 9. 82 (1H, s), 7. 87 (1H, d, J=4 Hz), 7. 75 (1H, d, J=8 Hz), 7. 70 (1H, dd, J=8 Hz, 4 Hz), 3. 14 (3H, s)HPLC retention time: 1.63 min (analysis condition U)

The synthetic route of 72635-78-0 has been constantly updated, and we look forward to future research findings.