Application In Synthesis of 2,4,5-Triphenylimidazole. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 2,4,5-Triphenylimidazole, is researched, Molecular C21H16N2, CAS is 484-47-9, about Catalytic conversion of 2,4,5-trisubstituted imidazole and 5-substituted 1H-tetrazole derivatives using a new series of half-sandwich (η6-p-cymene)Ruthenium(II) complexes with thiophene-2-carboxylic acid hydrazone ligands.
A new series of half-sandwich (η6-p-cymene)ruthenium(II) complexes with thiophene-2-carboxylic acid hydrazide derivatives [Ru(η6-p-cymene)(Cl)(L)] [L = N’-(naphthalen-1-ylmethylene)thiophene-2-carbohydrazide (L1), N’-(anthracen-9-ylmethylene)thiophene-2-carbohydrazide (L2) and N’-(pyren-1-ylmethylene)thiophene-2-carbohydrazide (L3)] were synthesized. The ligand precursors and their Ru(II) complexes (1-3) were structurally characterized by spectral (IR, UV-Vis, NMR and mass spectrometry) and elemental anal. The mol. structures of the ruthenium(II) complexes 1-3 were determined by single-crystal x-ray diffraction. All complexes were used as catalysts for the one-pot three-component syntheses of 2,4,5-trisubstituted imidazole and 5-substituted 1H-tetrazole derivatives The catalytic studies optimized parameters as solvent, temperature and catalyst. The catalysts revealed very active for a broad range of aromatic aldehydes presenting either electron attractor or electron donor substituents and, although less active, moderate to high activities were observed for alkyl aldehydes.
If you want to learn more about this compound(2,4,5-Triphenylimidazole)Application In Synthesis of 2,4,5-Triphenylimidazole, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(484-47-9).
Reference:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts