Yoon, Seok Hyun team published research in Journal of Organic Chemistry in 2020 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Safety of 4-(2-Bromoacetyl)benzonitrile

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Safety of 4-(2-Bromoacetyl)benzonitrile.

Yoon, Seok Hyun;Kim, Sung June;Kim, Ikyon research published 《 One-Pot Four-Component Coupling Approach to Polyheterocycles: 6H-Furo[3,2-f]pyrrolo[1,2-d][1,4]diazepine》, the research content is summarized as follows. A novel polyheterocyclic chem. space, 6H-furo[3,2-f]pyrrolo[1,2-d][1,4]diazepine, was generated by a one-pot four-component coupling reaction where multiple bonds (three C-C, one C-O, and one C-N) were formed through a domino sequence. Two heterocyclic rings (furan and diazepine) were sequentially constructed from the monocyclic pyrrole derivative under environment-friendly reaction conditions to furnish the tricyclic fused scaffold.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Safety of 4-(2-Bromoacetyl)benzonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Williams, Matthew B. team published research in Journal of Organic Chemistry in | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Computed Properties of 20099-89-2

Nitrile is any organic compound with a −C≡N functional group. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Computed Properties of 20099-89-2.

Williams, Matthew B.;Boyer, Alistair research published 《 Modular Synthesis of Highly Substituted 3-Azapyrroles by Rh(II) Catalyzed N-H Bond Insertion and Cyclodehydration》, the research content is summarized as follows. A modular synthesis of highly substituted 3-azapyrroles, e.g., I has been developed using a three-step sequence comprising: copper catalyzed alkyne-azide cycloaddition (CuAAC), N-H bond insertion and cyclodehydration. The compound 1-sulfonyl-1,2,3-triazoles (1-STs), e.g., 4-tolyl-1-tosyl-triazole can be accessed from common alkynes, e.g., 4-ethynyltoluene and sulfonyl azides, e.g., 4-toluenesulfonyl azide building blocks by CuAAC using copper(I) thiophene-2-carboxylate. Rhodium(II) acetate promoted 1-ST denitrogenation results in highly electrophilic rhodium azavinyl carbenes that, here, underwent insertion into the N-H bond of secondary α-aminoketones, e.g., 1-(4-tolyl)-2-(4-tolylamino)ethan-1-one to form 1,2-aminoalkenes, e.g., 1-[(2-oxo-2-(4-tolyl)ethyl)(4-tolyl)amino]-1-(4-tolyl)-2-(tosylamino)ethene. These products were cyclized and dehydrated using BF3OEt2 into highly substituted 3-azapyrroles, e.g., I. The three steps: CuAAC, N-H bond insertion and cyclodehydration could be telescoped into a one-pot process. The method proved to be highly efficient and tolerated a wide range of substituents.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Computed Properties of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Wang, Xinli team published research in ChemPlusChem in 2022 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Synthetic Route of 20099-89-2.

Wang, Xinli;Chen, Liwei;Li, Renfu;Xie, Zuoxu;Hu, Ming;Sun, Shitao;Li, Zhenli;Hao, Jinle;Lin, Bin;Chen, Xueyuan;Xie, Lijun research published 《 Development of Rofecoxib-Based Fluorophores from ACQ to AIE by Positional Regioisomerization》, the research content is summarized as follows. The development of aggregation-induced emission luminogens (AIEgens) has attracted increasing attention due to their potential applications in various areas in recent years. In this study, a facile conversion from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) was achieved by an efficient regioisomerization strategy based on the rofecoxib scaffold. Two compounds, named PYR2 and PYR4, were identified as regioisomers of rofecoxib derivatives to show dramatically different fluorescent properties. Compound PYR2 with an ortho-substituted piperidine group showed typical AIE activity while compound PYR4 with a para-piperidine group exhibited typical ACQ behavior. Notably, compound PYR2 showed polymorphism with two forms of crystals. It was also endowed with reversible mechanochromic luminescence and acidochromic properties. The different fluorescent properties were elucidated by UV/Vis absorption spectroscopy, powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analyzes. Its application as a security ink and in lipid droplets imaging have been demonstrated.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Wang, Yumei team published research in Organic Letters in 2021 | 20099-89-2

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. SDS of cas: 20099-89-2.

Wang, Yumei;Zhang, Ziwu;Deng, Lichan;Lao, Tianfeng;Su, Zhengquan;Yu, Yue;Cao, Hua research published 《 Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials》, the research content is summarized as follows. A simple and efficient mechanochem.-induced approach for the synthesis of 1,2-diketoindolizine derivatives I [R1 = H, 8-Me, 7-OMe, etc.; Ar = Ph, 2-FC6H4, 4-EtC6H4, etc.; R2 = Me, Ph, 4-FC6H4, etc.] via dicarbonylation/oxidation of indolizines and epoxides barium titanate as piezoelec. materials was developed. BaTiO3 was used as the piezoelec. material in this transformation. This method featured no usage of solvent, simple exptl. operation, scalable potential, and high conversion efficiency, which make it attractive and practical.

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Tunel, Hasan team published research in Journal of Heterocyclic Chemistry in 2021 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Related Products of 20099-89-2

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Related Products of 20099-89-2.

Tunel, Hasan;Er, Mustafa;Alici, Hakan;Onaran, Abdurrahman;Karakurt, Tuncay;Tahtaci, Hakan research published 《 Synthesis, structural characterization, biological activity, and theoretical studies of some novel thioether-bridged 2,6-disubstituted imidazothiadiazole analogues》, the research content is summarized as follows. In this study, thioether-bridged imidazo[2,1-b][1,3,4]thiadiazole derivatives that contained both imidazole and 1,3,4-thiadiazole I [X=Y = F, Cl; R’ = H, F, Cl, etc. ] were synthesized from the reactions of 2-amino-1,3,4-thiadiazole with phenacyl bromide (at yields of 59% to 74%). The structure of the synthesized compounds I was characterized using 1H NMR, 13C NMR, Fourier-transform IR spectroscopy, elemental anal., mass spectroscopy, and X-ray diffraction anal. Mycelial growth, mycelial growth inhibition, min. inhibitory concentration, min. fungicidal concentration, and LD values against various plant pathogenic fungi were determined for all of the target compounds I synthesized in the study. The test results showed that most of the compounds I had moderate to good antifungal activity. In addition, the absorption, distribution, metabolism, excretion (ADME) parameters of the compounds I were calculated, and it was observed that all of the compounds met the drug-likeness rules in general. Finally, using docking simulations, it was found that compounds I [X=Y = Cl; R’ = Ph, 2-naphthyl] and [X=Y = F; R’ = Ph, 2-naphthyl] showed high affinity to PDB ID:5TZ1, which is an CYP51 antifungal target structure.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Related Products of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Venugopala, Katharigatta N. team published research in Journal of Enzyme Inhibition and Medicinal Chemistry in 2021 | 20099-89-2

Safety of 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitrile is any organic compound with a −C≡N functional group. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Safety of 4-(2-Bromoacetyl)benzonitrile.

Venugopala, Katharigatta N.;Chandrashekharappa, Sandeep;Deb, Pran Kishore;Tratrat, Christophe;Pillay, Melendhran;Chopra, Deepak;Al-Shar’i, Nizar A.;Hourani, Wafa;Dahabiyeh, Lina A.;Borah, Pobitra;Nagdeve, Rahul D.;Nayak, Susanta K.;Padmashali, Basavaraj;Morsy, Mohamed A.;Aldhubiab, Bandar E.;Attimarad, Mahesh;Nair, Anroop B.;Sreeharsha, Nagaraja;Haroun, Michelyne;Shashikanth, Sheena;Mohanlall, Viresh;Mailavaram, Raghuprasad research published 《 Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme》, the research content is summarized as follows. A series of 1,2,3-trisubstituted indolizines (, and ) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds , , and were active against the H37Rv-MTB strain with min. inhibitory concentration (MIC) ranging from 4 to 32μg/mL, whereas the indolizines with Et ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64μg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential mol. targets for the indolizines. The X-ray diffraction anal. of the compound was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.

Safety of 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Venugopala, Katharigatta N. team published research in Molecules in 2021 | 20099-89-2

Name: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Name: 4-(2-Bromoacetyl)benzonitrile.

Venugopala, Katharigatta N.;Chandrashekharappa, Sandeep;Tratrat, Christophe;Deb, Pran Kishore;Nagdeve, Rahul D.;Nayak, Susanta K.;Morsy, Mohamed A.;Borah, Pobitra;Mahomoodally, Fawzi M.;Mailavaram, Raghu Prasad;Attimarad, Mahesh;Aldhubiab, Bandar E.;Sreeharsha, Nagaraja;Nair, Anroop B.;Alwassil, Osama I.;Haroun, Michelyne;Mohanlall, Viresh;Shinu, Pottathil;Venugopala, Rashmi;Kandeel, Mahmoud;Nandeshwarappa, Belakatte P.;Ibrahim, Yasmine F. research published 《 Crystallography, molecular modeling and COX-2 inhibition studies on indolizine derivatives》, the research content is summarized as follows. In this study, the design and synthesis of a new series of 7-methoxy indolizines I [R = 4-F, 4-CN, 3-MeO, 4-Br; R1 = Et, EtO(O)C] as bioisostere indomethacin analogs were carried out and evaluated for COX-2 enzyme inhibition. All the compounds I showed activity in micromolar ranges and the compound I [R = 4-CN, R1 = EtO(O)C] emerged as a promising COX-2 inhibitor with an IC50 of 5.84μM, as compared to indomethacin (IC50 = 6.84μM). The mol. modeling study of indolizines I indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound I [R = 4-Br, R1 = EtO(O)C] was subjected for single-crystal X-ray studies, Hirshfeld surface anal. and energy framework calculations The X-ray diffraction anal. showed that the mol. I [R = 4-Br, R1 = EtO(O)C] crystallized in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, β = 100.372(1)°, γ = 90.000° and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theor. calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion and total energy.

Name: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Song, Dan team published research in Organic Chemistry Frontiers in 2021 | 20099-89-2

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Synthetic Route of 20099-89-2.

Song, Dan;Huang, Changfeng;Liang, Peishi;Zhu, Baofu;Liu, Xiang;Cao, Hua research published 《 Lewis acid-catalyzed regioselective C-H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement》, the research content is summarized as follows. An efficient, direct, and novel Lewis acid-catalyzed regioselective C-H carboxamidation of indolizines with dioxazolones via an acyl nitrene type rearrangement under metal-free conditions was documented. A diverse array of indolizine-3-carboxamides I [R = Ph, 4-MeC6H4, 2-naphthyl, etc.; R1 = H, 8-Me, 6-Et, etc.; R2 = Ph, 4-MeC6H4, 2-FC6H4, etc.] were achieved in moderate to good yields with wide substrate scope. In these transformations, isocyanatobenzene was formed by the ring opening of dioxazolones and a subsequent Curtius-type rearrangement, which could be harnessed in C-H carboxamidation of N-heterocycles. The present protocol is satisfactorily complementary to nitrene transfer chem. and C-H functionalization of N-heterocycles. Furthermore, photophys. experiments revealed that a few compounds exhibited high fluorescence absorption and emission intensity.

20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., Synthetic Route of 20099-89-2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Tabassum, Sumaiya team published research in Materials Today: Proceedings in 2022 | 20099-89-2

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. SDS of cas: 20099-89-2.

Tabassum, Sumaiya;Govindaraju, Santhosh research published 《 Yttrium(III) oxide catalyzed facile synthesis of novel hydrazinyl thiazoles by multicomponent approach》, the research content is summarized as follows. Synthesis of novel hydrazinyl thiazoles I (R1 = 4-MeC6H4, 4-MeOC6H4, 4-BrC6H4, 4-ClC6H4, 4-NCC6H4; R2 = 4-methyl-2-thienyl, 5-methyl-2-furyl) by cyclocondensation reaction between substituted phenacyl bromides R1C(O)CH2Br, aromatic aldehydes R2CHO and thiosemicarbazide using yttrium(III) oxide as reusable catalyst in acetic acid is described. This chromatog.-free methodol. has several benefits such as being facile, atom economic and higher functional group tolerance, and it provides excellent yields in short reaction time.

SDS of cas: 20099-89-2, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Tang, Jian-Hong team published research in iScience in 2022 | 20099-89-2

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Recommanded Product: 4-(2-Bromoacetyl)benzonitrile.

Tang, Jian-Hong;Han, Guanqun;Li, Guodong;Yan, Kaili;Sun, Yujie research published 《 Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal-organic framework via two-photon absorption》, the research content is summarized as follows. Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-IR light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation

Recommanded Product: 4-(2-Bromoacetyl)benzonitrile, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts