Electric Literature of 194853-86-6, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 194853-86-6 name is 4-Fluoro-2-(trifluoromethyl)benzonitrile, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.
COMPARATIVE EXAMPLE A This example illustrates the preparation of 4-[(1S, 4S)-4-Hydroxy-1- 0 methylpentyloxy]-2-trifluoromethylbenzonitrile, using a strong base under anhydrous conditions, as described in co-pending United States patent application serial number 11/053,010.A 10 L, jacketed ChemGlass reactor was fitted with a mechanical stirrer, nitrogen sweep line, and NesLab chiller. The vessel was purged with nitrogen for 5 15 minutes and then charged with 61 g (1.5 mol) of sodium hydride (60% in mineral oil) and 2.0 L of tetrahydrofuran (1THF”). The suspension was stirred and cooled to 6.5C and then a solution of 180.3 g (1.53 mol) of (2S,5S)-(+)-2,5- hexanediol in 1.0 L of THF was added, in 4 portions, over 35 minutes. The mixture became very thick and 1.0 L of THF was added about halfway through Q the addition in order to facilitate better stirring. The maximum internal temperature observed was 14.4C. The suspension was stirred for 30 minutes and then 288.1 g (1 .52 mol) of 4-fluoro-2-(trifluoromethyl)benzonitrile was added. The mixture was further diluted with another 1.0 L of THF and then warmed to room temperature and allowed to stir overnight (a clear solution was obtained after 30 minutes). HPLC analysis at the 21 hour point showed a 48:45 mixture of the expected product (3) to the bis-alkylated byproduct (4). Water (3.0 L) and ethyl acetate (4.0 L) were added and the layers separated. The organic layer was washed with 2 x 2.0 L of water and 1 x 2.0 L of brine. The aqueous layers were back-extracted with 2.0 L of ethyl acetate and then the organic layers were combined and evaporated at the Rotavap. The residue was twice dissolved in 1.0 L of 2-propanol and evaporated at the Rotavap (to remove water). The crude product was twice purified by flash chromatography on silica gel using dichloromethane/methanol. A third chromatography column (Biotage system) was carried out using ethyl acetate/hexanes. The purified target was isolated as 149.8 g (34%) of an oil. The material assayed at >99% purity (a/a, HPLC) and had a proton NMR spectrum consistent with structure.
At the same time, in my other blogs, there are other synthetic methods of this type of compound, 4-Fluoro-2-(trifluoromethyl)benzonitrile, and friends who are interested can also refer to it.
Reference:
Patent; WARNER-LAMBERT COMPANY LLC; WO2006/136910; (2006); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts