Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Application of C8F4N2.
Yan, Zhi-Ping;Liu, Ting-Ting;Wu, Ruixia;Liang, Xiao;Li, Zhi-Qiang;Zhou, Liang;Zheng, You-Xuan;Zuo, Jing-Lin research published 《 Chiral Thermally Activated Delayed Fluorescence Materials Based on R/S-N2,N2′-Diphenyl-[1,1′-binaphthalene]-2,2′-diamine Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence》, the research content is summarized as follows. In this study, two pairs of chiral thermally activated delayed fluorescence (TADF) materials enabling circularly polarized luminescence (CPL) named R/S-p-BAMCN (rod-shape) and R/S-o-BAMCN (helix-shape) are prepared based on a new pair of chiral donor (D*), R/S-N2,N2′-diphenyl-[1,1′-binaphthalene]-2,2′-diamine (R/S-BAM), and two cyano (CN) acceptors. Due to the rigid mol. structure and special intramol. arrangement, the chiral TADF materials show high photoluminescence quantum efficiency (up to 0.86) with narrow full-width at half-maximum (38 nm in cyclohexane, 51 nm in toluene) and photoluminescence dissymmetry factor (|gPL|) up to 5.3 x 10-3. Particularly, the circularly polarized OLEDs (CP-OLEDs) with rod-shaped R/S-p-BAMCN as the emitter show high device performances with the maximum external quantum efficiency nearing 28%. Meanwhile, the semi-transparent CP-OLEDs based on helix-shaped R/S-o-BAMCN exhibit obvious circularly polarized electroluminescence (CPEL) properties with the electroluminescence |gEL| factors around 4.6 x 10-3. The strategy of rigid D*-A-D* structure with special arrangement of chiral donor provides a direct way to obtain efficient CP-TADF materials with narrow emission spectra and promising CPL properties for better CPEL performance.
1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Application of C8F4N2
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts