The origin of a common compound about 16588-02-6

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, A new synthetic method of this compound is introduced below., Application In Synthesis of 2-Chloro-5-nitrobenzonitrile

A solution of 2-chloro-5-nitrobenzonitrile (19.5 g, 106.81 mmol), HMDS (43.7 mL, 213.62 mmol), Pd2(dba)3(2.93 g, 3.20 mmol), 2′-(di-tert-butylphosphino)-N,N-dimethyl-[1,1′-biphenyl]-2-amine (3.28 g, 9.61 mmol), water (3.85 g, 213.62 mmol) and lithium acetate (35.2 g, 534.06 mmol) in DMF (400 mL) was stirred under argon gas atmosphere at 100C for 5 hr. To the reaction mixture were added water and ethyl acetate, and the organic layer was separated. The organic layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (solvent gradient; 0?5% ethyl acetate/hexane) to give 5-nitro-2-(trimethylsilyl)benzonitrile (13.2 g, 59.9 mmol, 56.1%) as a white solid.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; TAKEDA PHARMACEUTICAL COMPANY LIMITED; YAMAMOTO, SATOSHI; SHIRAI, JUNYA; WATANABE, HIROYUKI; FUKUMOTO, SHOJI; ODA, TSUNEO; TOKUHARA, HIDEKAZU; TOMATA, YOSHIHIDE; ISHII, NAOKI; TAWADA, MICHIKO; KOUNO, MITSUNORI; OCHIDA, ATSUKO; IMADA, TAKASHI; FUKASE, YOSHIYUKI; YUKAWA, TOMOYA; (719 pag.)TW2016/2105; (2016); A;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

The important role of 16588-02-6

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

Application of 16588-02-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile belongs to nitriles-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below.

A mixture of 2-chloro-5-nitrobenzonitrile (2g,1 eq,10.96mmol), potassium carbonate (4.54g, 3eq, 32.7001), piperidine (1 ¡¤ 63 mL, 1.5 eq, 16.34 mmol) and DMF (5 mL) at 90 C Should be 3h, until the reaction is complete, remove the oil bath. DMF was diluted with 100 mL EA, washed with saturated ammonium chloride and sodium chloride respectively. The aqueous phase was extracted again with ethyl acetate. The organic phases were combined and dried over anhydrous sodium sulfate. The filtrate was concentrated to give a yellow solid (Compound 10) 2.528 g, yield 99%

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Chinese Academy Of Sciences Shanghai Pharmaceutical Institute; Long Yaqiu; Xu Zhongliang; Wang Heyao; Cai Mengxin; (31 pag.)CN106892871; (2017); A;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

New downstream synthetic route of 16588-02-6

The synthetic route of 16588-02-6 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, A new synthetic method of this compound is introduced below., Recommanded Product: 16588-02-6

3-Cyano-4-chloroaniline. 2-Chloro-5-nitrobenzonitrile (25 g, 137 mmol) was dissolved in ethanol (275 mL). Stannous chloride dihydrate (154.5 g, 0.685 M) was added and the mixture stirred at 70 C. for 30 min. The mixture was then cooled to room temperature and poured into crushed ice. The mixture was made basic with solid sodium hydroxide. This mixture was extracted with ethyl acetate (3*100 mL). The extracts were combined, washed with brine, dried (MgSO4), concentrated and the residue dried under vacuum and recrystallized from ethanol to yield light brown needles (10.6 g, 51%).

The synthetic route of 16588-02-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Chapdelaine, Marc; Davenport, Timothy; Haeberlein, Markus; Horchler, Carey; McCauley, John; Pierson, Edward; Sohn, Daniel; US2004/87575; (2004); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Discovery of 16588-02-6

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

These common heterocyclic compound, 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. category: nitriles-buliding-blocks

10% Palladium on carbon (5.06 g) was added under an atmosphere of nitrogen to a chilled (ice- water bath) solution of 2-(3 -methyl- IH-1, 2,4- triazol-l-yl)-5-nitrobertzonitrile (10.9 g, 47.6 mmol) dissolved in methanol (100 mL). The flask was repeated evacuated and flushed with hydrogen gas (double balloon). The resulting mixture was allowed to warm to rt and left to stir for 16 h under the hydrogen atmosphere. Purged with nitrogen gas. Filtered the crude reaction mixture through a short dialomaceous earth (Celite ) plug. Rinsed reaction vessel and plug with methanol. Concentrated filtrate in vacuo. Dried residue on high vacuum overnight to afford 5-amino-2-(3-methyl-lH-l,2,4-triazol-l-yI)benzonitrile (6.59 g, 70 % yield) as a brown solid. LC-MS (M+H)+ 200.0. 1H NMR (500 MHz, DMSO- J6) delta ppm 2.29 – 2.37 (m} 3 H) 5.99 (s, 2 H) 6.94 (dd, J=8.85, 2.44 Hz, 1 H) 7.00 (d, J-2.44 Hz, 1 H) 7.37 (d, J=8.54 Hz, 1 H) 8.69 – 8.81 (m, 1 H).

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; MARCIN, Lawrence, R.; THOMPSON, Lorin, A., III; BOY, Kenneth, M.; GUERNON, Jason, M.; HIGGINS, Mendi, A.; SHI, Jianliang; WU, Yong-Jin; ZHANG, Yunhui; MACOR, John, E.; WO2010/83141; (2010); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Share a compound : 16588-02-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Chloro-5-nitrobenzonitrile, its application will become more common.

Related Products of 16588-02-6,Some common heterocyclic compound, 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, molecular formula is C7H3ClN2O2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

a) 5-nitro-2-phenylaminobenzonitrile 2-Chloro-5-nitrobenzonitrile (Aldrich) (3.64grams (hereinafter ‘g’), 20 millimoles (hereinafter ‘mmol’), aniline (2 milliliter (hereinafter ‘mL’), 22 mmol), N-methylpyrollidine (10 mL) and diisopropylethylamine (4 mL) were combined and heated to 120 under Ar for 18 hours (hereinafter ‘h’), cooled, poured into EtOAc (150 mL), washed with H2O (3X 50 mL) and saturated aqueous (hereinafter ‘satd. aq.) NaCl (50 mL), dried (Na2SO4), concentrated, and the residue was triturated with hexane, filtered and the solid was washed with hexane and dried in vacuo to afford 4.23 g (88%) of the title compound as a light green solid. 1H NMR (400) MHz, delta: 8.45 (finely split doublet, 1), 8.19 (dd, 1), 7.48 (m,3), 7.28 (d,2), 7.06 (d,1), 6.96 (br s,1).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Chloro-5-nitrobenzonitrile, its application will become more common.

Reference:
Patent; SmithKline Beecham Corporation; EP1233951; (2005); B1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Sources of common compounds: 16588-02-6

The chemical industry reduces the impact on the environment during synthesis 2-Chloro-5-nitrobenzonitrile. I believe this compound will play a more active role in future production and life.

16588-02-6, The chemical industry reduces the impact on the environment during synthesis 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, I believe this compound will play a more active role in future production and life.

In order to prepare a reaction mixture, a diselenide compound represented by a general formula R?-CH2—-a solvent, and a reducing agent were prepared. As the diselenide compound represented by the general formula R??-CH2-Se-Se–CH2—R? of the reaction mixture, various substances such as (SeCH2COOEt)2? (p-NO2PhCH2Se)2, (p-CNPhCH2Se)2, and the like were used. The diselenide compounds were as shown in [Table 1]. About 0.6 eq. of the diselenide compound was used. As the solvent, anhydrous dimethylformaldehyde (DMF) was used. Further, as the reducing agent, about 0.6 eq. of dithiothreitol (DTT) was used.10291] To be specific, the reaction mixture was prepared by adding the diselenide compound represented by the general formula R?CH2Se-Se-CH2—-R? and the reducing agent to 2 mL of the solvent. The reaction mixture was stirred for 1 hour at a constant temperature of 60 C.10292] After the reaction mixture was prepared, an aromatic compound as a starting material for producing the selenophene-fused aromatic compound was added to the reaction mixture at a time. Then, the reaction mixture was stirred for 30 minutes at a constant temperature of 60 C.10293] As the base to be added afier the starting material is added to the reaction mixture with stirring, a weak base K2C03 was used. 2.5 eq. of the base was added to the reaction mixture at room temperature with stirring for 24 hours at a constant temperature of 60 C.10294] After the base was added and the stirring was finished, it was observed that the starting material was completely consumed by using a thin layer chromatography in a mixture of ethyl acetate:hexane (EA:Hex). The solvent contained in the reaction mixture was removed in a vacuum, and a crude solid was extracted 3 times by using about 25 mE of a solvent including dichloromethane:water (1:1). An organic phase collected through the extraction process was dried in an anhydrous environment by using MgSO4, and the solvent was evaporated in a vacuum. The residue was refined by column chromatography using a silica gel column. A pure product, i.e. the selenophene-fused aromatic compound produced in the present Example, was eluted by using ethyl acetate and hexane, and recrystallized by using methanol and then filtered.

The chemical industry reduces the impact on the environment during synthesis 2-Chloro-5-nitrobenzonitrile. I believe this compound will play a more active role in future production and life.

Reference:
Patent; Samsung Life Public Welfare Foundation; Industry-Academia Cooperation Group of Sejong University; Lim, Dongyeol; Nam, Do-Hyun; Dubey, Rashmi; Lee, Hangeun; US2014/213790; (2014); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Simple exploration of 16588-02-6

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

A common heterocyclic compound, 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, molecular formula is C7H3ClN2O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 16588-02-6.

General procedure: To solution of 1.97 mmol (1.2 eq.) of phenol 2-8, 12-13 in 3 ml dry DMSO was added 79 mg(1.2 eq.) powdered NaOH. The mixture was heated at 50C for 20 min and to the formed clearsolution 0.300 g (1.64 mmol, 1.0 eq.) of 1 was added. The reaction mixture was heated at 80C for 8h. After cooling 40 ml water was added and extracted with DCM. The organic phase was washedwith aq. NaHCO3 and water, dried over Na2SO4, filtered and evaporated in vacuo. The crudeproducts 14-20, 24-25 were purified by column chromatography (50 g silica-gel). After column theformed solid products were powdered, washed with 3 ml hot hexane and dried in vacuo.

The synthetic route of 2-Chloro-5-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.

Reference:
Article; Dobrikov, Georgi M.; Slavchev, Ivaylo; Nikolova, Ivanka; Stoyanova, Adelina; Nikolova, Nadya; Mukova, Lucia; Nikolova, Rosica; Shivachev, Boris; Galabov, Angel S.; Bioorganic and Medicinal Chemistry Letters; vol. 27; 19; (2017); p. 4540 – 4543;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Some tips on 16588-02-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 16588-02-6.

16588-02-6, Adding some certain compound to certain chemical reactions, such as: 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 16588-02-6.

STARTING MATERIAL SYNTHETIC EXAMPLE 4 5-amino-2-piperidinobenzonitrile 2-Chloro-5-nitrobenzonitrile (20 g) and piperidine (9.34 g) were added to acetonitrile (100 ml) and the mixture was stirred at the refluxing temperature for 1 hr. The solvent was evaporated under reduced pressure. Diisopropyl ether was added to the residue to allow crystallization and the crystals were recrystallized from methanol to give 5-nitro-2-piperidinobenzonitrile (17 g).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 16588-02-6.

Reference:
Patent; Ushio, Hiroyuki; Naito, Youichiro; Sugiyama, Naoki; Kawaguchi, Takafumi; Ohtsuki, Makio; Chiba, Kenji; US2003/203909; (2003); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Share a compound : 16588-02-6

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Chloro-5-nitrobenzonitrile, its application will become more common.

16588-02-6,Some common heterocyclic compound, 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, molecular formula is C7H3ClN2O2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: A 4-halonitrobenzene (1.0 equiv), a hydroxyarene, and Cs2CO3 (1.1 equiv) were combined in DMF and the resulting heterogeneous mixture was stirred vigorously at 25-70 C until all 4-halonitrobenzene was consumed (2-24 h). The reaction mixture was diluted with H2O and was adjusted to pH 5 with 2 N HCl (aq). The solution was extracted three times with EtOAc, and the organic layers were combined, washed once with brine solution, dried over MgSO4, filtered and concentrated in vacuo to furnish the desired diaryl ether that was used directly without further purification.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 2-Chloro-5-nitrobenzonitrile, its application will become more common.

Reference:
Article; Taygerly, Joshua P.; McGee, Lawrence R.; Rubenstein, Steven M.; Houze, Jonathan B.; Cushing, Timothy D.; Li, Yang; Motani, Alykhan; Chen, Jin-Long; Frankmoelle, Walter; Ye, Guosen; Learned, Marc R.; Jaen, Juan; Miao, Shichang; Timmermans, Pieter B.; Thoolen, Martin; Kearney, Patrick; Flygare, John; Beckmann, Holger; Weiszmann, Jennifer; Lindstrom, Michelle; Walker, Nigel; Liu, Jinsong; Biermann, Donna; Wang, Zhulun; Hagiwara, Atsushi; Iida, Tetsuya; Aramaki, Hisateru; Kitao, Yuki; Shinkai, Hisashi; Furukawa, Noboru; Nishiu, Jun; Nakamura, Motonao; Bioorganic and Medicinal Chemistry; vol. 21; 4; (2013); p. 979 – 992;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Simple exploration of 16588-02-6

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 16588-02-6, other downstream synthetic routes, hurry up and to see.

A common compound: 16588-02-6, name is 2-Chloro-5-nitrobenzonitrile, belongs to nitriles-buliding-blocks compound, it can change the direction of chemical reaction, and react with certain compounds to generate new functional products. A new synthetic method of this compound is introduced below. 16588-02-6

General procedure: To solution of 1.97 mmol (1.2 eq.) of phenol 2-8, 12-13 in 3 ml dry DMSO was added 79 mg(1.2 eq.) powdered NaOH. The mixture was heated at 50C for 20 min and to the formed clearsolution 0.300 g (1.64 mmol, 1.0 eq.) of 1 was added. The reaction mixture was heated at 80C for 8h. After cooling 40 ml water was added and extracted with DCM. The organic phase was washedwith aq. NaHCO3 and water, dried over Na2SO4, filtered and evaporated in vacuo. The crudeproducts 14-20, 24-25 were purified by column chromatography (50 g silica-gel). After column theformed solid products were powdered, washed with 3 ml hot hexane and dried in vacuo.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 16588-02-6, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Dobrikov, Georgi M.; Slavchev, Ivaylo; Nikolova, Ivanka; Stoyanova, Adelina; Nikolova, Nadya; Mukova, Lucia; Nikolova, Rosica; Shivachev, Boris; Galabov, Angel S.; Bioorganic and Medicinal Chemistry Letters; vol. 27; 19; (2017); p. 4540 – 4543;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts