Introduction of a new synthetic route about 4-Fluoro-2-(trifluoromethyl)benzonitrile

According to the analysis of related databases, 194853-86-6, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 194853-86-6 as follows. 194853-86-6

General procedure: The mixture of 60% dispersion of NaH (80.0 mg, 2.0 mmol) inmineral oil and 5-bromo-tetrahydroquinoline (3) (212.0 mg,1.0 mmol) in dry DMF (4.0 ml) was stirred at 0 C for 30 min. 4-Fluoro-2-(trifluoromethyl) benzonitrile (378.2 mg, 2.0 mmol) wasadded and the mixture was warmed to room temperature. After2 h, the reaction mixture was quenched with cold water andextracted with ethyl acetate. The organic phase was washed withwater twice and then dried over anhydrous Na2SO4, filtered, andconcentrated under vacuum. Pure 4-(5-bromo-3,4-dihydroquinolin 1(2H)-yl)-2-(trifluoromethyl)benzonitrile (6)was obtained as a yellow solid (100.0 mg, yield 26.2%) after flashcolumn chromatography using a solvent of 10% ethyl acetate inhexanes. For the synthesis of intermediate 5 and 7, commerciallyavailable 2 and 4 were used respectively by the proceduredescribed for intermediate 6.

According to the analysis of related databases, 194853-86-6, the application of this compound in the production field has become more and more popular.

Reference:
Article; Yu, Jiang; Zhang, Lanxi; Yan, Guoyi; Zhou, Peiting; Cao, Chaoguo; Zhou, Fei; Li, Xinghai; Chen, Yuanwei; European Journal of Medicinal Chemistry; vol. 171; (2019); p. 265 – 281;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Extended knowledge of 2-Fluoro-5-methoxybenzonitrile

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 2-Fluoro-5-methoxybenzonitrile, other downstream synthetic routes, hurry up and to see.

Adding a certain compound to certain chemical reactions, such as: 127667-01-0, name is 2-Fluoro-5-methoxybenzonitrile, belongs to nitriles-buliding-blocks compound, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 127667-01-0, 127667-01-0

To a solution of 2-fluoro-5-methoxybenzonitrile (2 g, 13.2 mmoi) in DMSO (6.6 mL) was added l 02 (1.6 mL) and K2C03 (274 mg, 1.98 mmoi). The resulting solution was stirred for 30 mm at it. The reaction was then quenched with NaHC03 (said, 30 mL). The resulting solution was extracted with EtO Ac (50 mL), and the organic layers were combined, and concentrated under reduced pressure. The residue was purified by flash column chromatography (0-10% EtO Ac/petroleum ether) on silica gel to obtain compound 36a as a white solid. ^I-NM (400 MHz, DMSQ-t delta (ppm): 7.66 – 7.70 (m, 2H), 7.04 – 7.23 (m, 3H), 3.77 (s, 3H)

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 2-Fluoro-5-methoxybenzonitrile, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; HUANG, Hui; MEEGALLA, Sanath; PLAYER, Mark R.; (219 pag.)WO2017/27309; (2017); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Continuously updated synthesis method about 327056-73-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Chloro-5-fluorobenzonitrile.

Adding some certain compound to certain chemical reactions, such as: 327056-73-5, name is 3-Chloro-5-fluorobenzonitrile, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 327056-73-5. 327056-73-5

STEP A A mixture of 3-chloro-5-fluoro-benzonitrile (1.1 g, 7.07 mmol), 1-methyl-piperazine (1.18 ml, 10.6 mmol), and K2CO3 (2.92 g, 21.21 mmol) in DMSO (25 ml) was heated to 100C overnight and then partitioned between water and Et2O. The aqueous phase was extracted with Et2O and the collected organic phases were dried over Na2SO4 and evaporated under vacuum. The residue was dissolved in Et2O and extracted with 0.5 M HCl. The aqueous phase was basified with NH4OH and extracted with DCM. The organic phase was dried over Na2SO4 and evaporated to give 1.01 g of 3-chloro-5-(4-methyl-piperazin-1-yl)-benzonitrile. Y=61%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 3-Chloro-5-fluorobenzonitrile.

Reference:
Patent; DAC S.r.l.; EP2033956; (2009); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Share a compound : 2-Amino-3-bromobenzonitrile

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2-Amino-3-bromobenzonitrile, and friends who are interested can also refer to it.

114344-60-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 114344-60-4 name is 2-Amino-3-bromobenzonitrile, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

To a solution of 2-Amino-3-bromobenzonitrile (30.0 g) in THF (240 mL) was added sodium tert-butoxide (1.1 eq.) and the mixture was stirred at -5 to 5C for 1 hour. A solution of intermediate 3a in THF (85.0 g) was then added dropwise and the mixture was stirred for 2-4 hours monitoring the conversion by High Performance Liquid Chromatography (HPLC). Water (210 mL) was then added dropwise and the mixturewas concentrated to remove most of THF. Heptane (300 mL) was then added and the mixture was stirred for 30 mm. After phase separation, the organic layer was washed with water (210 mL), concentrated to 2-3 volumes and filtered through a pad of silica gel (60 g), washing the pad with heptane (300 mL), affording 63.3g of intermediate549.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, 2-Amino-3-bromobenzonitrile, and friends who are interested can also refer to it.

Reference:
Patent; JANSSEN PHARMACEUTICA NV; STANSFIELD, Ian; QUEROLLE, Olivier Alexis Georges; PONCELET, Virginie Sophie; GROSS, Gerhard Max; JACOBY, Edgar; MEERPOEL, Lieven; KULAGOWSKI, Janusz Jozef; MACLEOD, Calum; MANN, Samuel Edward; GREEN, Simon Richard; HYND, George; (477 pag.)WO2017/125530; (2017); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Application of 71825-51-9

The synthetic route of 71825-51-9 has been constantly updated, and we look forward to future research findings.

71825-51-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 71825-51-9, name is 2-Methyl-2-(4-nitrophenyl)propanenitrile belongs to nitriles-buliding-blocks compound, it is a common compound, a new synthetic route is introduced below.

10% Pd/C (300 mg) was added to a solution of 2-methyl-2-(4-nitro-phenyl)- propionitrile (3.00 g; 15.8 mmol), prepared as in l(A), in MeOH (65 mL). The mixture was hydrogenated at 1 bar at room temperature for 2.5 hours, the catalyst was filtered off and the filtrate was concentrated under reduced pressure to give the title compound as a yellow oil (2.40 g; 80% yield).LCMS (RT): 0.78 min (Method A); MS (ES+) gave m/z: 161.1 (MH+).

The synthetic route of 71825-51-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ADDEX PHARMA SA; WO2008/117175; (2008); A2;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

New learning discoveries about 1897-52-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1897-52-5.

1897-52-5, Adding some certain compound to certain chemical reactions, such as: 1897-52-5, name is 2,6-Difluorobenzonitrile, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 1897-52-5.

Example 94; 5-[1-(2-Trifluoromethylphenyl)-ethoxy]-quinazoline-2,4-diamine; [00287] Step 1; A solution of alpha-methyl-2- (trifluoromethyl)benzyl (750 mg; 3.9 mmol) in dimethylformamide was added to a cooled (0 C) slurry of sodium hydride (156 mg; 3.9 mmol) in dimethylformamide under nitrogen atmosphere. The reaction mixture was slowly warmed to room temperature, and stirred for 45 minutes. In another vessel, a solution of 2,6-difluorobenzonitrile (543 mg, 3.9 mmol) in dimethylfomamide was chilled to 0 C, and activiated anion was added over 20 minutes. Mixture was then stirred 2 hours at room temperature. The reaction mixture was poured on crushed ice-water, stirred, filtered, washed with water and dried to afford 1.2 g of solid (99% yield) of 2-fluoro-6-[1-(2-trifluoromethylphenyl)-ethoxy]- benzonitrile.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1897-52-5.

Reference:
Patent; DECODE CHEMISTRY, INC.; SINGH, Jasbir; GURNEY, Mark E.; WO2005/123724; (2005); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Introduction of a new synthetic route about 179898-34-1

The chemical industry reduces the impact on the environment during synthesis 3-Bromo-5-fluorobenzonitrile. I believe this compound will play a more active role in future production and life.

179898-34-1, The chemical industry reduces the impact on the environment during synthesis 179898-34-1, name is 3-Bromo-5-fluorobenzonitrile, I believe this compound will play a more active role in future production and life.

Step A: 3-fluoro-5-formylbenzonitrile: A solution of 3-bromo-5- fluorobenzonitrile (5.00 g, 25.0 mmol) in dry THF (25 mL) was cooled to 0 C and 2M iPrMgCl (15.0 mE, 30.0 mmol) in THF was added dropwise over 5 minutes. The mixture was stirred at 0 C for 15 minutes then at ambient temperature for 1 hour. The mixture was cooled to 0 C and dry DMF (5.81 mL, 75.0 mmol) was added. The mixture was stirred for 17 hours during which time the temperature reached ambient temperature after 2 hours. The mixture was added to ice water (150 mL) and Et20 (100 mL). The biphasic mixture was stirred and treated with 6M HC1 to aqueous pH=3. The organic layer was removed and the aqueous layer extracted with Et20 (2X). The combined Et20 fractions were washed with saturated NaC1 and dried over MgSO4/activated carbon. The dried solution was filtered through a Si02 plug eluting with Et20. The filtrate was concentrated to give the title compound as a yellow solid that was dried in vacuum (3.68 g, 99%). ?H NMR (CDC13) oe 10.0 (s, 1H), 8.00 (s, 111), 7.81-7.86 (m, 111), 7.62-7.67 (m, 111).

The chemical industry reduces the impact on the environment during synthesis 3-Bromo-5-fluorobenzonitrile. I believe this compound will play a more active role in future production and life.

Reference:
Patent; ARRAY BIOPHARMA INC.; ALLEN, Shelley; BRANDHUBER, Barbara, J.; KERCHER, Timothy; KOLAKOWSKI, Gabrielle, R.; WINSKI, Sharon, L.; WO2014/78323; (2014); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Application of 2,2-Dimethyl-2H-chromene-6-carbonitrile

According to the analysis of related databases, 33143-29-2, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 33143-29-2 as follows. 33143-29-2

Generally, the reactions were performed using 0.3 mmol of substrate; 0.3 mmol of co-catalyst; 0.2 mmol of chlorobenzene (GC internal standard) and Jacobsen complex (15 mg, 0.024 mmol) as catalyst; in 4 mL of solvent with continuous stirring at the desired temperature. The oxidant (3 mmol) was added totally at the beginning of the reaction (slowly to prevent gas evolution) or progressively at a rate of 3 mmol h-1. The progress of the reaction was monitored by GC-FID, by removing small samples of the reaction mixture every 15 min. The relative proportions of compounds usually did not change from 30-45 min of reaction time, when oxidant was totally added at the beginning of the reaction or from 120-135 min when oxidant was progressively added to the reaction mixture.The epoxide stereoselectivity was determined by 1H NMR in comparison with published data for (-)-(1R,2S)-1,2-indene oxide [47,48] and (3R,4R)-6-cyan-2,2-dimethychromene [49] or by comparison of analytic standards for (R)-(+)-styrene oxide.

According to the analysis of related databases, 33143-29-2, the application of this compound in the production field has become more and more popular.

Reference:
Article; Rocha, Mariana; Rebelo, Susana L.H.; Freire, Cristina; Applied Catalysis A: General; vol. 460-461; (2013); p. 116 – 123;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 622-75-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 622-75-3.

These common heterocyclic compound, 622-75-3, name is 2,2′-(1,4-Phenylene)diacetonitrile, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 622-75-3

Synthesis of PIDSB: PIDSB was prepared by knoevenagel condensation reaction.In a 100 mL round bottom flask, PICHO(8mmol, 3.18g),The p-benzenediacetonitrile (4 mmol, 0.63 g) was dissolved in 50 mL of tetrahydrofuran and 25 ml of t-butanol, and the temperature was raised to 46 C under a nitrogen atmosphere.1 ml of tetrabutylammonium hydroxide (TBAH) and a solution of 80 mg of potassium t-butoxide in tetrahydrofuran were prepared in advance.After half an hour of reaction, the system was poured into acetic acidified methanol solution at room temperature.The crude product was obtained by suction filtration and separated by column chromatography ( petroleum ether: methylene chloride = 1:5,The volume ratio) gave a red powdery solid (1.96 g, yield: 53%).Mass spectrum MALDI-TOF (m/z) [M+]: The found value was 917.56 and the theoretical value was 916.33.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 622-75-3.

Reference:
Patent; Jilin University; Lu Ping; Sun Xiaoyi; Li Jinyu; (13 pag.)CN108822040; (2018); A;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Simple exploration of 4-Bromo-2-methylbenzonitrile

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

67832-11-5, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 67832-11-5, name is 4-Bromo-2-methylbenzonitrile, A new synthetic method of this compound is introduced below.

4-bromo-2-methylbenzonitrile (1 mmol) was suspended in water (49 mL) and potassium hydroxide was added (50 mmol); the reaction mixture was stirred at reflux overnight. After cooling, the basic solution was washed with ethyl acetate (3 x 15 mL), acidified with hydrochloric acid (6M) and extracted with ethyl acetate (3 x 15 mL). The organic phase deriving from the acidic extraction was dried over anhydrous sodium sulfate and concentrated in vacuo, yielding the desired product as a white solid. Yield: 60%. TLC (dichloromethane – methanol 9:1): Rf = 0.46. Mp: 182C. 1H-NMR (300 MHz, CD3OD) delta (ppm) 7.80 (d, J = 8.4 Hz, 1H, H6), 7.48 (s, 1H, H3), 7.42 (d, J = 8.4 Hz, 1H, H5), 2.56 (s, 3H, CH3).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Chiarelli, Laurent R.; Mori, Matteo; Barlocco, Daniela; Beretta, Giangiacomo; Gelain, Arianna; Pini, Elena; Porcino, Marianna; Mori, Giorgia; Stelitano, Giovanni; Costantino, Luca; Lapillo, Margherita; Bonanni, Davide; Poli, Giulio; Tuccinardi, Tiziano; Villa, Stefania; Meneghetti, Fiorella; European Journal of Medicinal Chemistry; vol. 155; (2018); p. 754 – 763;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts