Tu, Poyi team published research in Separation and Purification Technology in 2022 | 1835-49-0

Computed Properties of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion. Computed Properties of 1835-49-0.

Tu, Poyi;He, Xunming;Abu-Reziq, Raed;Pan, Chunyue;Tang, Juntao;Yu, Guipeng research published 《 Fluorinated covalent triazine frameworks for effective CH4 separation and iodine vapor uptake》, the research content is summarized as follows. In this article, analogous covalent triazine framework (CTFs) were simply prepared through the trimerization of different nitrile building blocks (tetrafluoroterephthalonitrile or terephthalonitrile) under typical ionothermal conditions. We demonstrated that the fluorine contents could be simply altered by changing the comonomer compositions Introducing fluorine could adjust the pore size distribution and electron structure of the network effectively. By increasing fluorine contents, an enhanced CO2/CH4 selectivity up to 15.5 was presented. Addnl., electron-concentrated fluorine strengthened CH/π interactions between the polymeric matrixes and guest CH4, offering a CH4/N2 selectivity up to 8.0. The obtained CTFs also exhibited noticeable iodine adsorption capacity in vapor phase (302 wt%) due to their abundance of heteroatoms and porosity. These results clearly demonstrated the promising aspect of introducing fluorine groups into the porous networks for developing efficient sorbent towards potential applications in separating methane gas or iodine vapors and also affording further insight into the development of high performance functional polymers.

Computed Properties of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts