Lin, Yamei; Bu, Qingxia; Xu, Jiaxian; Liu, Xiao; Zhang, Xueping; Lu, Guo-Ping; Zhou, Baojing published their research in Molecular Catalysis in 2021. The article was titled 《Hf-MOF catalyzed Meerwein-Ponndorf-Verley (MPV) reduction reaction: Insight into reaction mechanism》.HPLC of Formula: 614-16-4 The article contains the following contents:
Hf-MOF-808 exhibits excellent activity and specific selectivity on the hydrogenation of carbonyl compounds via a hydrogen transfer strategy. Its superior activity than other Hf-MOFs is attributed to its poor crystallinity, defects and large sp. surface area, thereby containing more Lewis acid-base sites which promote this reaction. D. functional theory (DFT) computations are performed to explore the catalytic mechanism. The results indicate that alc. and ketone fill the defects of Hf-MOF to form a six-membered ring transition state (TS) complex, in which Hf as the center of Lewis stearic acid coordinates with the oxygen of the substrate mol., thus effectively promoting hydrogen transfer process. Other reactive groups, such as -NO2, C = C, -CN, of inadequate hardness or large steric hindrance are difficult to coordinate with Hf, thus weakening their catalytic effect, which explains the specific selectivity Hf-MOF-808 for reducing the carbonyl group. The experimental part of the paper was very detailed, including the reaction process of 3-Oxo-3-phenylpropanenitrile(cas: 614-16-4HPLC of Formula: 614-16-4)
3-Oxo-3-phenylpropanenitrile(cas: 614-16-4) has been used to produce 2-benzoyl-3-furan-2-yl-acrylonitrile. It is an active methylene compound, useful in heterocyclic synthesis, e.g. polyfunctional pyridines and pyrimidines.HPLC of Formula: 614-16-4
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts