Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. SDS of cas: 1835-49-0.
Cosey, Whitney K.;Balkus, Kenneth J. Jr.;Ferraris, John P.;Musselman, Inga H. research published 《 Reduced Aging in Carbon Molecular Sieve Membranes Derived from PIM-1 and MOP-18》, the research content is summarized as follows. Carbon mol. sieve membranes (CMSMs) commonly lose permeability over time due to the collapse of micropores. This decline in permeability, due to the densification of the membrane, is known as phys. aging. CMSMs derived from polymers of intrinsic microporosity (PIM-1) are highly affected by phys. aging, with declines in permeability greater than 60% over time. The densification of CMSMs derived from this high-free-volume polymer precursor is thermodynamically driven by the collapse of large unconnected graphene domains to reach a more stable conformation (i.e., graphite). This study describes a novel strategy to mitigate phys. aging by pillaring the CMSM using copper nanoparticles. Highly soluble metal-organic polyhedra-18 (MOP-18) was introduced into PIM-1 with loadings up to 40 wt/wt to form a mixed-matrix membrane (MMM). Pyrolysis of the MMM at 550°C resulted in the in situ formation of copper metal nanoparticles that acted as pillars for the graphene sheets within the CMSM, preventing the collapse of the micropores, thus minimizing the aging of the CMSM. Single gas permeation measurements of CO2 and CH4 were made on the pristine polymer-derived CMSM and the copper-pillared CMSM at 35°C and 2 bar to confirm the membranes’ resistance to phys. aging. The CH4 permeability for the PIM-1 CMSM decreased by ∼60%, from 64 to 27 Barrers, over a period of 7 days, while the copper-pillared PIM-1 CMSM remarkably showed essentially no decline in CH4 permeability. This research demonstrates a general approach to reducing phys. aging in CMSMs.
1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , SDS of cas: 1835-49-0
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts