Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Recommanded Product: Tetrafluoroterephthalonitrile.
Contreras-Martinez, Jorge;Mohsenpour, Sajjad;Ameen, Ahmed W.;Budd, Peter M.;Garcia-Payo, Carmen;Khayet, Mohamed;Gorgojo, Patricia research published 《 High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations》, the research content is summarized as follows. Thin film composite (TFC) membranes of the prototypical polymer of intrinsic microporosity (PIM-1) have been prepared by dip-coating on a highly porous electrospun polyvinylidene fluoride (PVDF) nanofibrous support. Prior to coating, the support was impregnated in a non-solvent to avoid the penetration of PIM-1 inside the PVDF network. Different non-solvents were considered and the results were compared with those of the dry support. When applied for the separation of n-butanol/water mixtures by pervaporation (PV), the developed membranes exhibited very high permeate fluxes, in the range of 16.1-35.4 kg m-2 h-1, with an acceptable n-butanol/water separation factor of about 8. The PV separation index (PSI) of the prepared membranes is around 115, which is among the highest PSI values that have been reported so far. Hybrid PV-distillation systems have been designed and modeled in Aspen HYSYS using Aspen Custom Modeler for setting up the PIM-1 TFC and com. PDMS membranes as a benchmark. The butanol recovery cost for the hybrid systems is compared with a conventional stand-alone distillation process used for n-butanol/water separation, and a 10% reduction in recovery cost was obtained.
Recommanded Product: Tetrafluoroterephthalonitrile, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts