Research on new synthetic routes about 2-Fluoro-4-nitrobenzonitrile

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 34667-88-4, name is 2-Fluoro-4-nitrobenzonitrile, A new synthetic method of this compound is introduced below., Formula: C7H3FN2O2

Reference Example 114 4-Amino-2-fluorobenzonitrile To a solution of 2-fluoro-4-nitrobenzonitrile (2.51 g) in methanol (125 mL) was added 10percent palladium carbon (50percent containing water, 237 mg), and the mixture was stirred under a hydrogen atmosphere for 3 hr. The reaction mixture was filtrated, and the filtrate was concentrated under reduced pressure. The residue was purified by basic silica gel column chromatography (eluent: hexane-ethyl acetate=1:1) to give the title compound as a pale-yellow solid (yield 1.43 g, 70percent). 1H-NMR (CDCl3)delta: 4.31 (2H, brs), 6.37-6.45 (2H, m), 7.31-7.36 (1H, m).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Patent; Takeda Pharmaceutical Company Limited; Kajino, Masahiro; Hasuoka, Atsushi; Tarui, Naoki; Takagi, Terufumi; EP2336107; (2015); B1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts