Simple exploration of 654-70-6

The synthetic route of 654-70-6 has been constantly updated, and we look forward to future research findings.

Application of 654-70-6,Some common heterocyclic compound, 654-70-6, name is 4-Cyano-3-trifluoromethylaniline, molecular formula is C8H5F3N2, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

; A reaction container was charged with 70 g of commercially available 4-cyano-3-trifluoromethylaniline (LC surface percentage: 99.39%) and 350 mL of ethanol, and the temperature was increased to 72C. After the mixture was stirred at 72 to 75C for 30 minutes, insoluble matters were removed by filtration at the same temperature and the mixture was further washed with 10 mL of ethanol. The filtrate thus obtained was cooled to 57C, and 360 mL of water was dropped at the same temperature over about 4 hours. 30 mg of 4-cyano-3-trifluoromethylaniline that had been previously purified was seeded thereto and the resultant mixture was cooled to 45C, and thereafter stirred at the same temperature for 30 minutes. Then, the mixture was cooled to 25C and stirred at the same temperature for 1 hour. Crystals were separated by filtration and washed with a mixed solvent of 56 mL of ethanol and 56 mL of water to give 83.81 g of wet crystals. The wet crystals were dried under reduced pressure to obtain 50.61 g of 4-cyano-3-trifluoromethylaniline. The LC surface percentage was 99.90%, and the yield was 72.3%. A reaction container was charged with 68 mL of N,N-dimethylacetamide, 22.1 g of methacrylic acid, and 38 mg of dibutylhydroxytoluene, and the temperature was reduced to -5C. Thionyl chloride in an amount of 30.6 g was dropped thereto at -3.8 to 0.3C over 50 minutes, and the mixture was kept at -4.0 to -0.8C for 30 minutes. A solution obtained by dissolving 36.0 g of 4-cyano-3-trifluoromethylaniline obtained as described above in 79 mL of N,N-dimethylacetamide was dropped into the reaction container at -5.3 to 0C over 65 minutes. The container for dropping was washed with 11 mL of N,N-dimethylacetamide, the washing liquid was added to the reaction solution, and the solution was kept at -5.3 to 0C for 1 hour. After completion of the reaction, the obtained reaction solution was dropped to a mixed solution of 306 mL of ethyl acetate and 252 mL of water at 20C or less. The solution was washed with 18 mL of N,N-dimethylacetamide and the washing solution and the mixed solution were combined, and 378.1 g of an aqueous 16% sodium carbonate solution was added to the solution to adjust the pH to 7.1. The resultant solution was stirred for 30 minutes and made to stand still for 30 minutes, followed by liquid separation. The liquid separation speed calculated in the same manner as in Example 1 was 1.7 m/hr. The organic layer was added with 571.8 g of 15% saline water to set the internal temperature to 60C. The resultant solution was stirred for 30 minutes and made to stand still for 30 minutes, followed by liquid separation. The liquid separation speed calculated in the same manner as in Example 1 was 3. 9 m/hr. The organic layer was added with 571.8 g of 15% saline water to set the internal temperature to 60C. The resultant solution was stirred for 30 minutes and made to stand still for 30 minutes, followed by liquid separation. The liquid separation speed calculated in the same manner as in Example 1 was 3. 6 m/hr. The organic layer was further added with 571. 8 g of 15% saline water to set the internal temperature to 60C. The resultant solution was stirred for 30 minutes and then made to stand still for 30 minutes, followed by liquid separation. The liquid separation speed calculated in the same manner as in Example 1 was 3. 0 m/hr. Then, the organic layer was charged with 180 mL of chlorobenzene, and ethyl acetate and chlorobenzene were distilled out in an amount of 222.3 g by vacuum concentration. Next, 504 mL of chlorobenzene, 1.8 g of activated carbon and 4.9 g of gamma-alumina were charged and the mixture was stirred at 75C for 30 minutes. The alumina and activated carbon were separated by filtration at the same temperature and washed with 36 mL of chlorobenzene. The filtrate and the washing solution were combined, and 545.5 g of chlorobenzene was distilled out by vacuum concentration, and then the mixture was cooled to 20C and stirred at 15 to 20C for 2 hours. Crystal were separated by filtration and washed with 108 mL of a chlorobenzene solution dissolved with 0.45 g of dibutylhydroxytoluene to give 48.94 g of wet crystals. After drying the crystal under reduced pressure, 45.27 g of crystals of N-methacryloyl-4-cyano-3-trifluoromethylaniline was obtained. The LC surface percentage was 99.92%, and the yield was 92.1%.

The synthetic route of 654-70-6 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Sumitomo Chemical Company, Limited; EP2204362; (2010); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts