Mechanistic and Performance Studies on the Ligand-Promoted Ullmann Amination Reaction was written by Lo, Quintin A.;Sale, David;Braddock, D. Christopher;Davies, Robert P.. And the article was included in ACS Catalysis in 2018.Safety of 4-(Benzylamino)benzonitrile This article mentions the following:
Over the last two decades many different auxiliary ligand systems have been utilized in the copper-catalyzed Ullmann amination reaction. However, there has been little consensus on the relative merits of the varied ligands and the exact role they might play in the catalytic process. Accordingly, in this work some of the most commonly employed auxiliary ligands have been evaluated for C-N coupling using reaction progress kinetic anal. (RPKA) methodol. The results reveal not only the relative kinetic competencies of the different auxiliary ligands but also their markedly different influences on catalyst degradation rates. For the model Ullmann reaction between piperidine and iodobenzene using the soluble organic base bis(tetra-n-butylphosphonium) malonate (TBPM) at room temperature, N-methylglycine was shown to give the best performance in terms of high catalytic rate of reaction and comparatively low catalyst deactivation rates. Further exptl. and rate data indicate a common catalytic cycle for all auxiliary ligands studied, although addnl. off-cycle processes are observed for some of the ligands (notably phenanthroline). The ability of the auxiliary ligand, base (malonate dianion), and substrate (amine) to all act competitively as ligands for the copper center is also demonstrated. On the basis of these results an improved protocol for room-temperature copper-catalyzed C-N couplings is presented with 27 different examples reported. In the experiment, the researchers used many compounds, for example, 4-(Benzylamino)benzonitrile (cas: 10282-32-3Safety of 4-(Benzylamino)benzonitrile).
4-(Benzylamino)benzonitrile (cas: 10282-32-3) belongs to nitriles. Nitrile function is a very important functional group because it can be manipulated to other functional groups such as carboxylic acid by hydrolysis or amine by reduction, respectively. Asymmetric bioreduction of nitriles is an attractive route to produce optically active nitriles as current metal-catalyzed hydrogenations tend to have low reactivity.Safety of 4-(Benzylamino)benzonitrile
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts