Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst was written by Wada, Emiko;Takeuchi, Tomoaki;Fujimura, Yuki;Tyagi, Akanksha;Kato, Tatsuhisa;Yoshida, Hisao. And the article was included in Catalysis Science & Technology in 2017.Recommanded Product: 4435-14-7 This article mentions the following:
A platinum-loaded TiO2 (Pt/TiO2) photocatalyst promoted cyanomethylation of aliphatic hydrocarbons, namely cyclohexane and cyclohexene, with acetonitrile, where the photogenerated hole oxidatively dissociates the C-H bond of both the acetonitrile and the aliphatic hydrocarbons to form each corresponding radical species before their radical cross-coupling. The Pt/TiO2 photocatalyst was more active than the Pd/TiO2 photocatalyst in these reactions. In contrast, the cyanomethylation of benzene was promoted by the Pd/TiO2 photocatalyst or a phys. mixture of the Pt/TiO2 photocatalyst and a Pd catalyst supported by Al2O3, while it was hardly promoted by the Pt/TiO2 photocatalyst alone. The temperature dependence of the reaction rate proved that the Pd nanoparticles on the TiO2 thermally function as a metal catalyst. However, in the cyanomethylation of aliphatic hydrocarbons, the catalytic effect of the metal particles was not observed, meaning that the radical coupling takes place without the metal catalysis. Thus, it is concluded that in the case of the benzene cyanomethylation the Pd nanoparticles play dual roles, as a catalyst to catalyze the substitution reaction of benzene with the cyanomethyl radical, and as an electron receiver to reduce the recombination of the photoexcited electrons and holes in the TiO2 photocatalyst, although they could not contribute as a catalyst to the cyanomethylation of aliphatic hydrocarbons. In the experiment, the researchers used many compounds, for example, 2-Cyclohexylacetonitrile (cas: 4435-14-7Recommanded Product: 4435-14-7).
2-Cyclohexylacetonitrile (cas: 4435-14-7) belongs to nitriles. The R-C-N bond angle in and nitrile is 180° which give a nitrile functional group a linear shape. Both the carbon and the nitrogen are sp hydridized which leaves them both with two p orbitals which overlap to form the two π bond in the triple bond. Alkyl nitriles are sufficiently acidic to undergo deprotonation of the C-H bond adjacent to the CN group.Strong bases are required, such as lithium diisopropylamide and butyl lithium. The product is referred to as a nitrile anion. Recommanded Product: 4435-14-7
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts