2-Formylpyridyl Ureas as Highly Selective Reversible-Covalent Inhibitors of Fibroblast Growth Factor Receptor 4 was written by Knoepfel, Thomas;Furet, Pascal;Mah, Robert;Buschmann, Nicole;Leblanc, Catherine;Ripoche, Sebastien;Graus-Porta, Diana;Wartmann, Markus;Galuba, Inga;Fairhurst, Robin A.. And the article was included in ACS Medicinal Chemistry Letters in 2018.Electric Literature of C5H4N4 This article mentions the following:
As part of a project to identify FGFR4 selective inhibitors, scaffold morphing of a 2-formylquinoline amide hit identified series of 2-formylpyridine ureas (2-FPUs) with improved potency and physicochem. properties. In particular, tetrahydronaphthyridine urea analogs with cellular activities below 30 nM have been identified. Consistent with the hypothesized reversible-covalent mechanism of inhibition, the 2-FPUs exhibited slow binding kinetics, and the aldehyde, as the putative electrophile, could be demonstrated to be a key structural element for activity. In the experiment, the researchers used many compounds, for example, 2-Aminopyrimidine-5-carbonitrile (cas: 1753-48-6Electric Literature of C5H4N4).
2-Aminopyrimidine-5-carbonitrile (cas: 1753-48-6) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.Electric Literature of C5H4N4
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts