Ornstein, Paul L. et al. published their research in Journal of Medicinal Chemistry in 1991 | CAS: 36057-44-0

4-methoxypicolinonitrile (cas: 36057-44-0) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Asymmetric bioreduction of nitriles is an attractive route to produce optically active nitriles as current metal-catalyzed hydrogenations tend to have low reactivity.Formula: C7H6N2O

4-(Tetrazolylalkyl)piperidine-2-carboxylic acids. Potent and selective N-methyl-D-aspartic acid receptor antagonists with a short duration of action was written by Ornstein, Paul L.;Schoepp, Darryle D.;Arnold, M. Brian;Leander, J. David;Lodge, David;Paschal, Jonathan W.;Elzey, Tom. And the article was included in Journal of Medicinal Chemistry in 1991.Formula: C7H6N2O This article mentions the following:

A series of trans– and cis-4-(tetrazolylalkyl)piperidine-2-carboxylic acids I (R = H, Me) and II (n = 1, R = H, Me; n = 2-4, R = H) as potent and selective N-methyl-D-aspartic acid (NMDA) receptor antagonists were prepared and evaluated in vitro in both receptor binding assays and in a cortical-wedge preparation to determine affinity, potency, and selectivity. The new amino acids were also evaluated in vivo for their ability to block NMDA-induced convulsions in neonatal rats and NMDA-induced lethality in mice. The most potent compound of this series was I (R = H). I (R = H) blocked both NMDA-induced convulsions in neonatal rats and NMDA-induced lethality in mice. This is the first example of an NMDA receptor antagonist that incorporates a tetrazole moiety as an ω-acid bioisostere. These amino acid antagonists are also unique from their phosphonic acid counterparts in that they have a shorter duration of action in vivo. In the experiment, the researchers used many compounds, for example, 4-methoxypicolinonitrile (cas: 36057-44-0Formula: C7H6N2O).

4-methoxypicolinonitrile (cas: 36057-44-0) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Asymmetric bioreduction of nitriles is an attractive route to produce optically active nitriles as current metal-catalyzed hydrogenations tend to have low reactivity.Formula: C7H6N2O

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts