Feroci, Marta et al. published their research in Advanced Synthesis & Catalysis in 2008 | CAS: 70291-62-2

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.Recommanded Product: 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile

Activation of elemental sulfur by electrogenerated cyanomethyl anion: synthesis of substituted 2-aminothiophenes by the Gewald reaction was written by Feroci, Marta;Chiarotto, Isabella;Rossi, Leucio;Inesi, Achille. And the article was included in Advanced Synthesis & Catalysis in 2008.Recommanded Product: 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile This article mentions the following:

The activation of elemental sulfur (S8) has been achieved using the electrogenerated cyanomethyl anion [easily obtained by galvanostatic reduction from acetonitrile/tetraethylammonium hexafluorophosphate (MeCN-Et4NPF6)]. The “activated” sulfur reacted with ylidenemalononitriles to give substituted 2-aminothiophenes in very high yields. This variation of the Gewald reaction has been carried out using only catalytic amounts of electricity and supporting electrolyte. A proposed mechanism for the interaction between S8 and cyanomethyl anion is described. In the experiment, the researchers used many compounds, for example, 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2Recommanded Product: 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile).

2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile (cas: 70291-62-2) belongs to nitriles. Trimerization of aromatic nitriles requires harsh reaction conditions, high temperatures, long reaction times, and pressure. Nitrile groups in organic compounds can undergo a variety of reactions depending on the reactants or conditions. A nitrile group can be hydrolyzed, reduced, or ejected from a molecule as a cyanide ion.Recommanded Product: 2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts