Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones was written by Zhou, Xiaowei;Wu, Xiaofeng;Yang, Bolun;Xiao, Jianliang. And the article was included in Journal of Molecular Catalysis A: Chemical in 2012.Name: (R)-4-(1-Hydroxyethyl)benzonitrile This article mentions the following:
Asym. transfer hydrogenation (ATH) is frequently carried out in the azeotropic mixture of formic acid (F) and triethylamine (T), where the F/T molar ratio is 2.5. This study shows that the F/T ratio affects both the reduction rate and enantioselectivity, with the optimum ratio being 0.2 in the ATH of ketones with the Ru-TsDPEN catalyst. Under such conditions, a range of substrates have been reduced, affording high yields and good to excellent enantioselectivities. In comparison with the common azeotropic F-T system, the reduction is faster. This protocol improves both the classic azeotropic and the aqueous-formate system when using water-insoluble ketones. In the experiment, the researchers used many compounds, for example, (R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6Name: (R)-4-(1-Hydroxyethyl)benzonitrile).
(R)-4-(1-Hydroxyethyl)benzonitrile (cas: 101219-69-6) belongs to nitriles. Nitrile compounds can be prepared by the incorporation of a cyanide source through C–C bond formation or by dehydration of primary carboxamides. Some nitriles are manufactured by heating carboxylic acids with ammonia in the presence of catalysts. This process is used to make nitriles from natural fats and oils, the products being used as softening agents in synthetic rubbers, plastics, and textiles and for making amines.Name: (R)-4-(1-Hydroxyethyl)benzonitrile
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts