Kalita, Gauravjyoti D. published the artcileBimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell), Recommanded Product: Picolinonitrile, the main research area is gold palladium nanoparticle silica coreshell structure catalytic activity.
A facile ligand-assisted approach of synthesizing bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure is presented. Maneuvering the addition sequence of metal salts, both Aucore-Pdshell (Au@Pd-SiO2) and Pdcore-Aushell (Pd@Au-SiO2) nanoparticles were synthesized. The structures and compositions of the core-shell materials were confirmed by probe-corrected HRTEM, TEM-EDX mapping, EDS line scanning, XPS, PXRD, BET, FE-SEM-EDX and ICP anal. The synergistic potentials of the core-shell materials were evaluated for two important reactions viz. hydrogenation of nitroarenes to anilines and hydration of nitriles to amides. In fact, in both the reactions, the Au-Pd materials exhibited superior performance over monometallic Au or Pd counterparts. Notably, among the two bimetallic materials, the one with Pdcore-Aushell structure displayed superior activity over the Aucore-Pdshell structure which could be attributed to the higher stability and uniform Au-Pd bimetallic interfaces in the former compared to the latter. Apart from enhanced synergism, high chemoselectivity in hydrogenation, wide functional group tolerance, high recyclability, etc. are other advantages of our system. A kinetic study has also been performed for the nitrile hydration reaction which demonstrates first order kinetics. Evaluation of rate constants along with a brief investigation on the Hammett parameters has also been presented.
Nanoscale Advances published new progress about Catalysis. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Recommanded Product: Picolinonitrile.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts