Alvarez-Bermudez, Olaia published the artcileMagnetically enhanced polymersupported ceria nanocatalysts for the hydration of nitriles, Quality Control of 100-70-9, the main research area is magnetite nitrile polystyrene ceria nanocatalyst hydration heterogeneous catalysis.
The heterogeneous catalysis of the hydration of nitriles to amides is a process of great industrial relevance in which cerium(IV) oxide (also referred to as ceria) has shown an outstanding catalytic performance. The use of non-supported ceria nanoparticles is related to difficulties in the purification of the product and the recovery and recyclability of the catalyst. Therefore, in this work, ceria nanoparticles are supported on a polymer matrix either by synthesizing polymer particles by so-called Pickering miniemulsions while using ceria nanoparticles as emulsion stabilizers or, as a comparison, by in-situ crystallization on preformed polymer particles. The former strategy presents significant advantages over the latter in terms of time and consumption of resources, and it facilitates an easier scale-up of the process. In both strategies, the incorporation of a magnetoresponsive core within the polymer matrix allows the recovery and the recycling of the catalyst by simple application of a magnetic field and offers an enhancement of the catalytic efficiency.
Nanotechnology published new progress about Adsorption. 100-70-9 belongs to class nitriles-buliding-blocks, name is Picolinonitrile, and the molecular formula is C6H4N2, Quality Control of 100-70-9.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts