Zhao, Genfu team published research in Nano Energy in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Nitrile is any organic compound with a −C≡N functional group. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. HPLC of Formula: 1835-49-0.

Zhao, Genfu;Xu, Lufu;Jiang, Jingwen;Mei, Zhiyuan;An, Qi;Lv, Pengpeng;Yang, Xiaofei;Guo, Hong;Sun, Xueliang research published 《 COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries》, the research content is summarized as follows. Solid-state sodium-ion batteries exhibit a great promising opportunity for the future energy storage, and thus exploring a high-efficiency sodium-ion conductor is the urgent challenge. Covalent organic frameworks (COFs) have accurately directional and well-defined ion channels and are a promising and optimal platform for solid-state Na-ion conductor. In this work, we study the first example of carboxylic acid sodium functionalized polyarylether linked COF (denoted as NaOOC-COF) as an advanced Na-ion quasi-solid-state conductor film. Benefiting from the well-defined ion channels, the functionalized NaOOC-COF exhibits an outstanding Na+ conductivity of 2.68 x 10-4 S cm-1 at room temperature, low activation energy (Ea) with 0.24 eV and high transference number of 0.9. Particularly, the NaOOC-COF shows long-time cycling performance in the assembled quasi-solid-state battery, and can restrain dendrite growth through interface regulation. Furthermore, the Na+ diffusion mechanism in whole-cell system is investigated thoroughly. Such extraordinary Na-ion transport result based on COFs is achieved for the first time. This novel strategy may exploit the new area of Na-ion quasi-solid-state electrolytic devices, and simultaneously accelerate the progress of functionalized COFs.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts