Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Related Products of 1835-49-0.
Rochat, Sebastien;Tian, Mi;Atri, Ria;Mays, Timothy J.;Burrows, Andrew D. research published 《 Enhancement of gas storage and separation properties of microporous polymers by simple chemical modifications》, the research content is summarized as follows. Owing to their large surface area and good solvent processability, polymers of intrinsic microporosity (PIMs) have been widely investigated for gas storage and separation processes. In this article, we show how chem. modifying the polymers can fine-tune their properties for specific, targeted applications. We find that converting the archetypal microporous polymer PIM-1 into a polycarboxylate salt enhances its separation capabilities for H2/CO2 mixtures (relevant to hydrogen production), whereas appending multiple amine groups significantly improves gas separation properties for N2/CO2 mixtures (relevant to flue gas treatment). Adsorption-based separation processes have received less attention than size-sieving processes in porous polymeric materials, however they could provide a suitable alternative technol. to energy-intensive separation processes such as cryogenic distillation We also report the hydrogen storage properties of the modified polymers, which we find to depend on the chem. modification carried out. By coupling the simplicity of the proposed chem. modifications with the scalability and porous properties of PIMs, we provide a blueprint to create new multifunctional materials with adapted properties for targeted applications.
1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , Related Products of 1835-49-0
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts