Lan, Zhi-An team published research in Angewandte Chemie, International Edition in 2021 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , COA of Formula: C8F4N2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. COA of Formula: C8F4N2.

Lan, Zhi-An;Wu, Meng;Fang, Zhongpu;Chi, Xu;Chen, Xiong;Zhang, Yongfan;Wang, Xinchen research published 《 A Fully Coplanar Donor-Acceptor Polymeric Semiconductor with Promoted Charge Separation Kinetics for Photochemistry》, the research content is summarized as follows. Charge generation and separation are regarded as the major constraints limiting the photocatalytic activity of polymeric photocatalysts. Herein, two new linear polyarylether-based polymers (PAE-CPs) with distinct linking patterns between their donor and acceptor motifs were tailor-made to investigate the influence of different linking patterns on the charge generation and separation process. Theor. and exptl. results revealed that compared to the traditional single-stranded linker, the double-stranded linking pattern strengthens donor-acceptor interactions in PAE-CPs and generates a coplanar structure, facilitating charge generation and separation, and enabling red-shifted light absorption. With these prominent advantages, the PAE-CP interlinked with a double-stranded linker exhibits markedly enhanced photocatalytic activity compared to that of its single-strand-linked analog. Such findings can facilitate the rational design and modification of organic semiconductors for charge-induced reactions.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , COA of Formula: C8F4N2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts