Bilgicli, Ahmet T. team published research on Applied Organometallic Chemistry in 2021 | 31643-49-9

Application of C8H3N3O2, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Application of C8H3N3O2.

Bilgicli, Ahmet T.;Genc Bilgicli, Hayriye;Hepokur, Ceylan;Tuezuen, Burak;Guensel, Armagan;Zengin, Mustafa;Yarasir, M. Niluefer research published 《 Synthesis of (4R)-2-(3-hydroxyphenyl)thiazolidine-4-carboxylic acid substituted phthalocyanines: Anticancer activity on different cancer cell lines and molecular docking studies》, the research content is summarized as follows. Firstly, (4R)-2-(3-hydroxyphenyl)thiazolidine-4-carboxylic acid (1) and (4R)-2-(3-(3,4-dicyanophenoxy)phenyl)thiazolidine-4-carboxylic acid (2) were prepared Then, the novel type metallophthalocyanines (ZnPc (3), CuPc (4), and CoPc (5)) bearing thiazolidine groups in peripheral positions were synthesized using by compound (2). The synthesized new compounds (15) were characterized by the combination of standard spectroscopic methods such as FTIR, 1H NMR, 13C NMR, UV-visible spectral data, and MALDI-TOF. Aggregation behaviors of peripheral tetra-substituted metallophthalocyanines were investigated in DMSO media. Fluorescence properties and fluorescence quantum yield of the new type zinc phthalocyanine (3) were performed in DMSO at room temperature The anticancer activity of novel type metallophthalocyanines bearing thiazolidine groups in peripheral positions were investigated on rat glioma cancer (C6), human prostate carcinoma (DU-145), and normal human lung fibroblast (WI-38) cell lines. Finally, the biol. and chem. activities of (4R)-2-(3-(3,4-dicyanophenoxy)phenyl)thiazolidine-4-carboxylic acid (2) and its novel type metallophthalocyanines (ZnPc (3), CuPc (4), and CoPc (5)) have been compared with many parameters obtained using theor. methods that are the Gaussian software and mol. docking.

Application of C8H3N3O2, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Ameen, Ahmed W. team published research on Journal of Membrane Science in 2021 | 1835-49-0

Synthetic Route of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. Synthetic Route of 1835-49-0.

Ameen, Ahmed W.;Ji, Jing;Tamaddondar, Marzieh;Moshenpour, Sajjad;Foster, Andrew B.;Fan, Xiaolei;Budd, Peter M.;Mattia, Davide;Gorgojo, Patricia research published 《 2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation》, the research content is summarized as follows. Phys. aging represents one of the major obstacles towards adoption of polymer of intrinsic microporosity (PIM) membranes for gas separation applications. In this work, mixed matrix membranes (MMMs) of 2D boron nitride nanosheets (BNNS) and PIM-1 were prepared and applied in the separation of a CO2/CH4 (1:1, v:v) binary gas mixture The membranes were tested over a period of more than one year to evaluate their anti-aging properties as compared to neat PIM-1. The results show that introducing BNNS into PIM-1 leads to a significant reduction in the phys. aging of PIM-1, as demonstrated by the values of reduction in CO2 permeability after 414 days (22% for the MMMs as compared to 58% for neat PIM-1). This work paves the way to using PIM-based membranes in industry.

Synthetic Route of 1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Alshahrani, Hassan team published research on Journal of Applied Polymer Science in 2022 | 31643-49-9

Product Details of C8H3N3O2, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. Product Details of C8H3N3O2.

Alshahrani, Hassan;Dayo, Abdul Qadeer;Liu, Wen-bin research published 《 Development of chopped glass fiber composites with difunctional benzoxazine and bio-based phthalonitrile copolymer: A study of mechanical and thermomechanical properties》, the research content is summarized as follows. The randomly-oriented glass fibers (GF) reinforced composites with Bisphenol A-amine based benzoxazine (BA-a) and bio-based eugenol-based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent-treated GF (TGF) reinforced composites showed much better impact strength as compared to as-received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young’s modulus were observed, resp. The DMA results confirmed that the storage modulus (E’) and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 weight%. E’ and Tg values were 3.09 GPa and 27°C, resp., higher than the recorded values for the neat copolymer. The 40 weight% TGF reinforced poly(BA-a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, resp. The LOI values confirm that the TGF/copolymer composites have self-extinguishing properties.

Product Details of C8H3N3O2, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Al-Matarneh, Maria Cristina team published research on Molecules in 2021 | 20099-89-2

Application of C9H6BrNO, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Nitrile is any organic compound with a −C≡N functional group. 20099-89-2, formula is C9H6BrNO, Name is 4-(2-Bromoacetyl)benzonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Application of C9H6BrNO.

Al-Matarneh, Maria Cristina;Amarandi, Roxana-Maria;Mangalagiu, Ionel I.;Danac, Ramona research published 《 Synthesis and biological screening of new cyano-substituted pyrrole fused (iso)quinoline derivatives》, the research content is summarized as follows. Several new cyano-substituted derivatives with pyrrolo[1,2-a]quinoline I [R = Br, CN, OMe] and pyrrolo[2,1a]isoquinoline II scaffolds were synthesized by the [3+2] cycloaddition of (iso)quinolinium ylides to fumaronitrile. The cycloimmonium ylides reacted in situ as 1,3-dipoles with fumaronitrile to selectively form distinct final compounds, e.g., III depending on the structure of the (iso)quinolinium salt. Eleven compounds were evaluated for their anticancer activity against a panel of 60 human cancercell lines. The most potent compound III showed a broad spectrum of antiproliferative activity against cancer cell lines representing leukemia, melanoma and cancer of lung, colon, central nervoussystem, ovary, kidney, breast and prostate cancer. In vitro assays and mol. docking revealed tubulin interaction properties of compound III.

Application of C9H6BrNO, 4-(2-Bromoacetyl)benzonitrile, also known as 2-Bromo-4′ -cyanoacetophenone, is a useful research compound. Its molecular formula is C9H6BrNO and its molecular weight is 224.05 g/mol. The purity is usually 95%.
2-Bromo-4′ -cyanoacetophenone can be synthesized from ethylbenzene via aerobic photooxidation using aqueous HBr.
4-(2-Bromoacetyl)benzonitrile is useful for the irreversible inhibitory activity of Glycogen synthase kinase 3 (GSK-3). Phenylhalomethylketones can be used in the study of novel GSK-3 inhibitors., 20099-89-2.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Almalki, Masaud team published research on Nanoscale in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. HPLC of Formula: 1835-49-0.

Almalki, Masaud;Ducinskas, Algirdas;Carbone, Loi C.;Pfeifer, Lukas;Piveteau, Laura;Luo, Weifan;Lim, Ethan;Gaina, Patricia A.;Schouwink, Pascal A.;Zakeeruddin, Shaik M.;Milic, Jovana V.;Gratzel, Michael research published 《 Nanosegregation in arene-perfluoroarene pi-systems for hybrid layered Dion-Jacobson perovskites》, the research content is summarized as follows. Layered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analog (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases. Moreover, their behavior was probed in humid environments to reveal nanoscale segregation of layered perovskite species based on PDMA and F-PDMA components, along with enhanced stabilities of perfluoroarene systems, which is relevant to their application.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Aljaddua, Huda I. team published research on Arabian Journal of Chemistry in 2022 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Formula: C4H5NO2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Formula: C4H5NO2.

Aljaddua, Huda I.;Alhumaimess, Mosaed S.;Hassan, Hassan M. A. research published 《 CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction》, the research content is summarized as follows. Porous materials based on NH2-MIL-101(Cr) MOF and their hierarchical acid-base composite with non-precious CaO was successfully prepared using a one-pot scalable hydrothermal approach. The composites were characterized by XRD, FTIR, UV-vis, 1HNMR, TGA, N2 adsorption-desorption isotherms, HRTEM and FESEM. The quant. assessment of the basic sites was performed by benzoic acid titration The results reveal that there is no remarkable structural alterations in the NH2-MIL-101(Cr) after incorporation of CaO. Raising the CaO content boosted the strength of and content of Lewis basic sites from 0.31 to 1.34 mmol g-1 due to the incorporation with CaO (0.04). Knoevenagel condensation reactions were performed as the probe reactions over the CaO/NH2-MIL-101(Cr) catalysts. Both basic and acidic sites potentially boosted the reaction. Pure NH2-MIL-101(Cr) display the catalytic conversion in the reaction (11%) which could be attributed weak basic sites on the NH2-MIL-101(Cr) framework. However, the conversion (%) was potentially increased over NH2-MIL-101(Cr) loaded with various content of CaO. The highest performance of (99%) conversion was achieved for (0.04) CaO/NH2-MIL-101(Cr) catalyst. Exceptional conversion above 90% have been obtained for benzaldehyde derivatives both withdrawing and donating electron moieties. The composites can be recycled in four runs with a very small loss in performance. Furthermore, the composites produced tend to be feasible for various catalytic processes, exploring new avenues to produce of novel inorganic and organic composite materials as heterogeneous catalysts.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Formula: C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Alizadeh, Abdolali team published research on ChemistrySelect in 2021 | 105-34-0

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Product Details of C4H5NO2

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Product Details of C4H5NO2.

Alizadeh, Abdolali;Farajpour, Behnaz research published 《 Chemoselective Synthesis of Substituted Benzo[c]chromen-6-ones through Base-Promoted Reaction of α,β-Unsaturated Coumarins and α-Cyano Carbonyls》, the research content is summarized as follows. A general and efficient method for the chemoselective synthesis of benzo[c]chromen-6-ones was developed. This involved a base-promoted nucleophilic substitution/deprotonation/intramol. aldol condensation/carboxylic acid or alkyl hydrogen carbonate elimination/aromatization reaction of α-cyano carbonyls and α,β-unsaturated coumarins. Readily available starting materials, green and mild conditions, synthetically useful yields and operational simplicity are some highlighted advantages of this transformation.

105-34-0, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., Product Details of C4H5NO2

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Alici, Esma Hande team published research on Journal of Molecular Structure in 2022 | 31643-49-9

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Application In Synthesis of 31643-49-9.

Alici, Esma Hande;Bilgicli, Ahmet T.;Tuzun, Burak;Gunsel, Armagan;Arabaci, Gulnur;Nilufer Yarasir, M. research published 《 Alkyl chain modified metalophthalocyanines with enhanced antioxidant-antimicrobial properties by doping Ag+ and Pd2+ ions》, the research content is summarized as follows. In this study, we report the synthesis and characterization of peripheral alkyl chain-substituted metalophthalocyanines [CuPc (3), ZnPc (4), and CoPc (5)] as optically sensitive substances with antifungal and antibacterial properties. Synthesized compounds were characterized by using common spectroscopic methods such as 1H NMR, 13C NMR, FT-IR, MALDI-TOF, fluorescence, and UV-Vis spectroscopy. Aggregation behaviors of phthalocyanines in the presence of Ag+ and Pd2+ ions were investigated by UV-Vis and fluorescence spectroscopy. The quenching capacity of Ag+ and Pd2+ ions for 4 was calculated from the Stern-Volmer equation and was found to be 9.76 x 104 mol/L and 2.86 x 105 mol/L for Pd2+ and Ag+ ions, resp. The binding stoichiometry (n) and binding constant (Ka) of 4 for Ag+and Pd2+ions were calculated by the changed Benesi-Hildebrand equation. Ka value of 4 for Ag+and Pd2+ions are 2.57 x 109M  1 and 1.44 x 108M  1, resp. The binding ratio of 4 for Ag+and Pd2+ions is 1.83 and 1.68, resp. The morphol. features of phthalocyanine derivatives were examined before and after the Ag+or Pd2+ions treatment by SEM (SEM). In addition, the antioxidant efficiencies of newly synthesized metalophthalocyanines and their Ag+ and Pd2+ ion-doped aggregates were evaluated using different methods such as DPPH free radical scavenging, iron ion chelating, and reducing power activities. The chem. and biol. activities of phthalonitrile and its metalophthalocyanines were also evaluated by DFT and mol. docking calculations Finally, the antifungal and antibacterial efficiencies of newly synthesized β-substituted phthalocyanines and their Ag+ and Pd2+ ion-doped forms were investigated using macrobroth dilution and disk diffusion methods.

Application In Synthesis of 31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Alepee, Nathalie team published research on Toxicology In Vitro in 2020 | 105-34-0

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Nitriles used to be known as cyanides; the smallest organic nitrile is ethanenitrile, CH3CN, (old name: methyl cyanide or acetonitrile – and sometimes now called ethanonitrile). 105-34-0, formula is C4H5NO2, Name is Methyl 2-cyanoacetate. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Safety of Methyl 2-cyanoacetate.

Alepee, Nathalie;Leblanc, Virginie;Grandidier, Marie-Helene;Teluob, Severine;Tagliati, Valerie;Adriaens, Els;Michaut, Valerie research published 《 Development of the SkinEthic HCE Time-to-Toxicity test method for identifying liquid chemicals not requiring classification and labelling and liquids inducing serious eye damage and eye irritation》, the research content is summarized as follows. This study describes the development of a Time-to-Toxicity approach for liquids (TTL) based on the SkinEthic HCE tissue construct, capable to distinguish chems. that do not require classification for serious eye damage/eye irritation (No Cat.) from chems. that require classification for eye irritation (Cat. 2), and serious eye damage (Cat. 1). Briefly, the Time-to-Toxicity of 56 liquids was evaluated by exposing SkinEthic HCE tissue constructs to the test chem. for three different time periods (5-min, 16-min, and 120-min). Based on the viability observed for the different exposure periods, a classification was assigned. The within laboratory reproducibility in terms of concordance in classifications (3 UN GHS categories), based on a set of 50 liquids, was 80.0%. Furthermore, 84.3% Cat. 1 (N = 17), 79.4% Cat. 2 (N = 21) and 72.2% No Cat.(N = 18) were correctly identified with the SkinEthic HCE TTL test method. This study provides evidence that the SkinEthic HCE Time-to-Toxicity method (multiple exposure times) is capable of distinguishing Cat. 2 liquids from Cat. 1 liquids This is an advantage compared to the SkinEthic HCE EITL method (single exposure time) that can distinguish No Cat. chems. from chems. that do require classification and labeling for eye irritation/serious eye damage (Cat. 2/Cat. 1).

Safety of Methyl 2-cyanoacetate, Methyl cyanoacetate is an alkyl cyanoacetate ester.
Methyl cyanoacetate is the intermediate product in pharmaceutical organic synthesis as well as in the synthesis of some biologically active compounds used in agriculture. It undergoes calcite or fluorite catalyzed Knövenagel condensation with aromatic aldehydes, giving the corresponding arylidenemalononitriles and (E)-α -cyanocinnamic esters.
Methyl Cyanoacetate is often used as a nucleophile in the electrochemical oxidation of catechols. Methyl Cyanoacetate is also a reagent in the synthesis of Methyl 2-Amino-4-trifluoromethylthiophene-3-carboxylate (M287290); a compound used in the synthesis of DPP-IV inhibitors for treating type 2 diabetes., 105-34-0.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts

Akkoc, Berkay team published research on Dalton Transactions in 2022 | 31643-49-9

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., HPLC of Formula: 31643-49-9

Nitriles are found in many useful compounds. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile. Nitriles are found in many useful compounds. One of the most common occurrences of nitriles is in Nitrile rubber. HPLC of Formula: 31643-49-9.

Akkoc, Berkay;Samsunlu, Taylan;Isik, Seyma;Ozcesmeci, Mukaddes;Atmaca, Goknur Yasa;Erdogmus, Ali;Serhatli, Muge;Hamuryudan, Esin research published 《 Pegylated metal-free and zinc(II) phthalocyanines: synthesis, photophysicochemical properties and in vitro photodynamic activities against head, neck and colon cancer cell lines》, the research content is summarized as follows. In this study, a series of peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines were successfully prepared in good yields by cyclotetramerization of the phthalonitrile derivative bearing a tetraethylene glycol Me ether group at 3- and 4- positions. All newly synthesized compounds were characterized using spectroscopic methods, such as FT-IR, NMR, mass and UV-Vis spectroscopy. To determine the therapeutic potential of the synthesized phthalocyanines, the effects of the substitution pattern (peripheral and non-peripheral) and central metal atom on the photophysicochem. properties were investigated. When comparing their singlet oxygen generation capabilities (ΦΔ), metallo-phthalocyanine derivatives with zinc (0.73 for 1b and 0.70 for 2b) showed higher singlet oxygen yield than metal-free derivatives (0.21 for 1a and 0.12 for 2a) in DMSO. The photodynamic therapy activities of the water-soluble phthalocyanines were tested via in vitro studies using the A253, FaDu (head and neck cancer cell lines), and HT29 (colon cancer) cell lines. The strongest photodynamic activity was found in 1b and 2b mols. with a metal core among the four mols. studied. The results suggested that the non-peripherally tetra-substituted 1b mol. was regarded as a suitable photodynamic therapy agent due to its light cytotoxicity and secondary impact induced by ROS production

31643-49-9, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., HPLC of Formula: 31643-49-9

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts