Chen, Zhongxin team published research on Nature Communications in 2022 | 31643-49-9

Name: 4-Nitrophthalonitrile, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Nitrile is any organic compound with a −C≡N functional group. 31643-49-9, formula is C8H3N3O2, Name is 4-Nitrophthalonitrile.The prefix cyano- is used interchangeably with the term nitrile in literature. Name: 4-Nitrophthalonitrile.

Chen, Zhongxin;Song, Jingting;Zhang, Rongrong;Li, Runlai;Hu, Qikun;Wei, Pingping;Xi, Shibo;Zhou, Xin;Nguyen, Phuc T. T.;Duong, Hai M.;Lee, Poh Seng;Zhao, Xiaoxu;Koh, Ming Joo;Yan, Ning;Loh, Kian Ping research published 《 Addressing the quantitative conversion bottleneck in single-atom catalysis》, the research content is summarized as follows. Single-atom catalysts (SACs) offer many advantages, such as atom economy and high chemoselectivity; however, their practical application in liquid-phase heterogeneous catalysis is hampered by the productivity bottleneck as well as catalyst leaching. Flow chem. is a well-established method to increase the conversion rate of catalytic processes, however, SAC-catalyzed flow chem. in packed-bed type flow reactor is disadvantaged by low turnover number and poor stability. In this study, we demonstrate the use of fuel cell-type flow stacks enabled exceptionally high quant. conversion in single atom-catalyzed reactions, as exemplified by the use of Pt SAC-on-MoS2/graphite felt catalysts incorporated in flow cell. A turnover frequency of approx. 8000 h-1 that corresponds to an aniline productivity of 5.8 g h-1 is achieved with a bench-top flow module (nominal reservoir volume of 1 cm3), with a Pt1-MoS2 catalyst loading of 1.5 g (3.2 mg of Pt). X-ray absorption fine structure spectroscopy combined with d. functional theory calculations provide insights into stability and reactivity of single atom Pt supported in a pyramidal fashion on MoS2. Our study highlights the quant. conversion bottleneck in SAC-mediated fine chems. production can be overcome using flow chem.

Name: 4-Nitrophthalonitrile, 4-Nitrophthalonitrile, also known as 4-Nitrophthalonitrile, is a useful research compound. Its molecular formula is C8H3N3O2 and its molecular weight is 173.13 g/mol. The purity is usually > 95%.
4-Nitrophthalonitrile is a chemical substance that can be synthesized by the reaction of sodium carbonate with 3,4,5-trimethoxybenzyl alcohol. It can also be prepared using nitro phenol and sodium hydroxide. 4-Nitrophthalonitrile has been shown to have high photochemical activity in the presence of light. The frequency shift of its infrared spectrum is indicative of a nucleophilic addition reaction mechanism. 4-Nitrophthalonitrile has been used as an intermediate for producing other chemicals, such as herbicides and pharmaceuticals., 31643-49-9.

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts