Industrially, the main methods for producing nitriles are ammoxidation and hydrocyanation. 1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Both routes are green in the sense that they do not generate stoichiometric amounts of salts. Formula: C8F4N2.
Chen, Wenbo;Zhang, Zhenguo;Yang, Cancan;Liu, Jing;Shen, Hongcheng;Yang, Kai;Wang, Zhe research published 《 PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance》, the research content is summarized as follows. In this work, we fabricated PIM-based mixed matrix membranes (MMMs) containing MOF-801/ionic liquid nanocomposites to enhance CO2 separation performance of pure polymer membranes. All membranes and MOF-801/ionic liquid nanocomposites were prepared by solution casting method and wet impregnation, resp. The samples were analyzed by SEM, XRD, FTIR, TGA and Nitrogen adsorption-desorption measurements. The nanocomposites are composed of metal-organic framework (MOF) MOF-801 and ionic liquid (IL) adsorption capacity. MOF-801 can well control the dispersion of IL in the polymer matrix, which is conducive to exposing more active sites in the nanocomposites to improve the CO2 adsorption selectivity of MOF-801/ionic liquid nanocomposites. At the same time, the porous structure of nanocomposites also enhances the gas adsorption and diffusion, thereby improving the gas separation performance. Compared with pure PIM-1 membranes, the CO2 permeability and CO2/N2 selectivity of IL@MOF/PIM-5% MMMs was increased by 129% and 45% (CO2 = 9420 Barrer, CO2/N2 = 29), resp. Compared with MOF-801/PIM-1 MMMs, the permeability of CO2 decreased slightly but the selectivity of CO2/N2 increased from 27 to 29. The aging test showed that the CO2 permeability of MMMs could remain above 70% after 90 days. The anti-plasticization performance of MMMs has also been significantly improved. The CO2 separation performance of IL@MOF/PIM-5% MMMs significantly exceeded the 2008 Robeson upper bound, showing excellent gas separation performance and working stability.
Formula: C8F4N2, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , 1835-49-0.
Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts