Almalki, Masaud team published research on Nanoscale in 2022 | 1835-49-0

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Inorganic compounds containing the −C≡N group are not called nitriles, but cyanides instead.1835-49-0, formula is C8F4N2, Name is Tetrafluoroterephthalonitrile. Though both nitriles and cyanides can be derived from cyanide salts, most nitriles are not nearly as toxic. HPLC of Formula: 1835-49-0.

Almalki, Masaud;Ducinskas, Algirdas;Carbone, Loi C.;Pfeifer, Lukas;Piveteau, Laura;Luo, Weifan;Lim, Ethan;Gaina, Patricia A.;Schouwink, Pascal A.;Zakeeruddin, Shaik M.;Milic, Jovana V.;Gratzel, Michael research published 《 Nanosegregation in arene-perfluoroarene pi-systems for hybrid layered Dion-Jacobson perovskites》, the research content is summarized as follows. Layered hybrid perovskites are based on organic spacers separating hybrid perovskite slabs. We employ arene and perfluoroarene moieties based on 1,4-phenylenedimethylammonium (PDMA) and its perfluorinated analog (F-PDMA) in the assembly of hybrid layered Dion-Jacobson perovskite phases. The resulting materials are investigated by X-ray diffraction, UV-vis absorption, photoluminescence, and solid-state NMR spectroscopy to demonstrate the formation of layered perovskite phases. Moreover, their behavior was probed in humid environments to reveal nanoscale segregation of layered perovskite species based on PDMA and F-PDMA components, along with enhanced stabilities of perfluoroarene systems, which is relevant to their application.

1835-49-0, Tetrafluoroterephthalonitrile can react with alkyl grignard reagents to form 4-alkyltetraflurorobenzonitriles. It acts as a four electron donor ligand. Tetrafluoroterephthalonitrile can be used to synthesize polymers of intrinsic microporosity. It has been used to study UV rearranged polymers of teh PIM-1 type membrane for the efficient separation of H2 and CO2.
Tetrafluoroterephthalonitrile reacts with alkyl Grignard reagents to form corresponding 4-alkyltetrafluorobenzonitriles. Tetrafluoroterephthalonitrile acts as a four-electron donor ligand and forms tungsten(II)η 2-nitrile complexes.
Tetrafluoroterephthalonitrile is a hydroxyl group-containing organic chemical compound . It has been used in analytical chemistry as a reagent for the determination of peptide binding constants and disulfide bonds. Tetrafluoroterephthalonitrile binds to nucleophilic sites on proteins, such as the pim-1 protein, and can be used to transport other molecules across cell membranes. In addition, it has been used to produce polymers for use in analytical chemistry. This chemical is also able to bind with magnetic particles under constant pressure conditions, which makes it useful for optical sensor applications. , HPLC of Formula: 1835-49-0

Referemce:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts