Synthetic Route of C21H16N2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 2,4,5-Triphenylimidazole, is researched, Molecular C21H16N2, CAS is 484-47-9, about Ni-Rhodanine Complex Supported on FSM-16 as Mesoporous Silica Support: Synthesis, Characterization and Application in Synthesis of Tri and Tetrasubstituted Imidazoles and 3,4-Dihydropyrimidine-2-(1H)-Ones. Author is Gholamian, Fatemeh; Hajjami, Maryam; Sanati, Ali Mohammad.
A new, efficient and recoverable heterogeneous catalyst was successfully synthesized by functionalization of mesoporous silica FSM-16. The FSM-16/CPTMS-Rh-Ni(II) characterization with several techniques such as, XRD, TGA, FT-IR, SEM, EDX, BET and ICP. As a result, it was found that this synthesized compound acted as catalyst for many multi component reactions. These reactions included the synthesis of 2,4,5-triaryl-1H-imidazoles, 1,2,4,5-tetrasubstituted imidazoles and 3,4-dihydropyrimidine-2-(1H)-ones derivatives
The article 《Ni-Rhodanine Complex Supported on FSM-16 as Mesoporous Silica Support: Synthesis, Characterization and Application in Synthesis of Tri and Tetrasubstituted Imidazoles and 3,4-Dihydropyrimidine-2-(1H)-Ones》 also mentions many details about this compound(484-47-9)Synthetic Route of C21H16N2, you can pay attention to it, because details determine success or failure
Reference:
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts