Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 906673-45-8, name is 4-(4-Bromo-3-(hydroxymethyl)phenoxy)benzonitrile, A new synthetic method of this compound is introduced below., Recommanded Product: 4-(4-Bromo-3-(hydroxymethyl)phenoxy)benzonitrile
4-(4-bromo-3-(hydroxymethyl)phenoxy)benzonitrile (compound B) (10.0 g, 32.9 mmol), potassium acetate (9.7 g, 99.0 mmol), XPhos (0.078 g, 0.16 mmol), XPhos-Pd-G2 (0.068 g, 0.082 mmol) and tetrahydroxydiboron (4.4 g, 49.3 mmol) were added to an oven dried glass reactor with a positive N2 pressure. The vessel was sealed and then evacuated and backfilled with N2 (four times). MeOH (100 mL, degassed) was added via syringe, followed by the addition of ethylene glycol (5.5 mL, 99.0 mmol). The reaction was then heated to 64-66 C until the starting material was consumed (as monitored by TLC). The solvent was concentrated in vacuo and the crude reaction product was dissolved in EtOAc (50 mL) and then transferred to a separatory funnel. H20 was added (50 mL), the layers were separated and the aqueous layer was further extracted with more EtOAc (30 mL). The combined organic layers were washed once with 1 M HCI (30 mL) and once with H20 (30 mL), then dried over Na2S04 and concentrated in vacuo. The solid residue was purified twice by recrystallization in hot methanol, thus affording pure 4-[(1-hydroxy-1 ,3-dihydro- 2,1-benzoxaborol-5-yl)oxy]benzonitrile (crisaborole) (6.6 g, 26.3 mmol) as a white solid. Yield: 80% (calculated from 4-(4-bromo-3-(hydroxymethyl)phenoxy)benzonitrile) Purity by HPLC: > 99.9% 1H-NMR (200 MHz, DMSO-d6, delta ppm): 9.22 (1 H, s); 7.85-7.83 (2H, m, J= 8.9 Hz); 7.81 -7.79 (1 H, d, J= 8.1 Hz); 7.15-7.13 (3H, m); 7.10-7.08 (1 H, dd, J= 8.1 , 2.1 Hz); 4.97 (2H, s) 13C-NMR (50 MHz, DMSO-d6, ppm): 160.6; 157.1 ; 156.6; 134.7; 132.6; 1 18.9; 1 18.6; 1 12.7; 105.5; 69.7.] FT-IR: 2222.9, 1600.8, 1501.2, 1467.5, 1406.0, 1390.9, 1360.6, 1244.7, 1 167.3, 1 1 16.1 , 1010.7, 937.3, 892.5
The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.
Reference:
Patent; LABORATORIOS LESVI, SL; HUGUET CLOTET, Juan; OZORES VITURRO, Lidia; RODRIGUEZ ROPERO, Sergio; DALMASES BARJOAN, Pere; (39 pag.)WO2018/115362; (2018); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts