These common heterocyclic compound, 53312-82-6, name is 4-Amino-2-bromobenzonitrile, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Computed Properties of C7H5BrN2
To a mixture of 4-amino-2-bromobenzonitrile (1.00 g, 5.08 mmol), 2-ethyl-5,7-dimethyl- 3-(4-(4,4,5,5-tetramethyl-1 ,2-dioxaborolan-2-yl)benzyl)-3H-imidazo[4,5-b]pyridine (OOld, 1.773 g, 4.53 mmol) and K2C03 (2.505 g, 18.13 mmol) was added 1,4-dioxane and 0 (2:1, 30 mL). The reaction mixture was then purged with a stream of N2 for 5 min in a sealable vial before Pd(Ph3P)4 (0.262 g, 0.227 mmol) was added. The reaction vial was sealed and the mixture heated at 100C for 18h. The cooled reaction mixture was then diluted with EtOAc (50 mL), washed with 0 and brine, dried (Na2S04) and evaporated. The crude residue was purified by flash chromatography (ISCO, 0-100% EtOAc-DCM) to afford the title compound (1.46 g, 4.53 mmol, 85%) as a white solid. LC-MS (Method H): 1.220 min, [M + H]+= 382.5; H NMR (400 MHz, CDC13) delta ppm 7.37 – 7.55 (m, 3H), 7.19 (d, / = 8.2 Hz, 2H), 6.90 (s, 1H), 6.51 – 6.68 (m, 2H), 5.51 (s, 2H), 4.17 (br s, 2H), 2.81 (d, / = 7.4 Hz, 2H), 2.59 (s, 3H), 2.64 (s, 3H), 1.33 (t, / = 7.4 Hz, 3H).
The synthetic route of 4-Amino-2-bromobenzonitrile has been constantly updated, and we look forward to future research findings.