Brief introduction of 4-Bromo-2-fluoro-5-methylbenzonitrile

According to the analysis of related databases, 916792-13-7, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 916792-13-7 as follows. Safety of 4-Bromo-2-fluoro-5-methylbenzonitrile

4-Bromo-2-fluoro-5-methylbenzamide In a 100-mL round bottom flask, 4-bromo-2-fluoro-5-methylbenzonitrile (5 g, 23.36 mmol, 1.00 equiv) was dissolved in a mixture of sulfuric acid (40 mL) and trifluoroacetic acid (10 mL) at room temperature. The resulting solution was then stirred overnight at 80 C. When the reaction was done, it was diluted with 200 mL water/ice and precipitation happened. The resulting precipitate was collected by filtration, rinsed with water and dried under reduced pressure to afford 4-bromo-2-fluoro-5 methylbenzamide (4.8 g, 89%) as white solid. MS: m/z=232.1 [M+H]+.

According to the analysis of related databases, 916792-13-7, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Merck Patent GmbH; GAILLARD, Pascale; SEENISAMY, Jeyaprakashnarayanan; LIU-BUJALSKI, Lesley; CALDWELL, Richard D.; POTNICK, Justin; QIU, Hui; NEAGU, Constantin; JONES, Reinaldo; WON, Annie Cho; GOUTOPOULOS, Andreas; SHERER, Brian A.; JOHNSON, Theresa L.; GARDBERG, Anna; (234 pag.)US2016/96834; (2016); A1;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts