These common heterocyclic compound, 939-80-0, name is 4-Chloro-3-nitrobenzonitrile, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. Recommanded Product: 939-80-0
EXAMPLE 3a Preparation of 4-chloro-3-aminobenzonitrile A degassed solution of 40 mmol of 4-chloro-3-nitrobenzonitrile (starting material) and 40 ml of xylene are placed in an autoclave (volume: 200 ml).5.0 mmol of TPPTS (in the form of 9.2 g of an aqueous solution containing 0.546 mol of TPPTS/kg of solution) as phosphine and 2.4 g (60 mmol) of NaOH, 23.8 ml of H2 O and 1.0 mmol of PdCl2 are added. The pH isfrom 10.5 to 11.0. The autoclave is closed, evacuated and filled with nitrogen. The evacuationand filling with nitrogen is repeated twice, then the autoclave is filled with CO, evacuated and refilled with CO. The evacuation and filling with CO is repeated twice. The autoclave is subsequently pressurized with CO to a pressure of 120 bar and the mixture is heated to 100 C. while stirring. The reaction time is 20 hours. The mixture is subsequently cooled to room temperature, the autoclave is emptied and the organic phase is separated from the aqueous phase. The organic phase is filtered to remove traces of palladiumand evaporated under reduced pressure, with the desired product being purified, if desired by crystallization or chromatography.
The synthetic route of 4-Chloro-3-nitrobenzonitrile has been constantly updated, and we look forward to future research findings.
Reference:
Patent; Hoechst Aktiengesellschaft; US5744643; (1998); A;,
Nitrile – Wikipedia,
Nitriles – Chemistry LibreTexts